Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199341331> ?p ?o ?g. }
- W3199341331 endingPage "36347" @default.
- W3199341331 startingPage "36336" @default.
- W3199341331 abstract "Metal-organic frameworks are a new class of materials for hydrogen adsorption/storage applications. The hydrogen storage capacity of this structure is typically related to pressure, temperature, surface area, and adsorption enthalpy. Literature provides no reliable correlation for estimating the hydrogen uptake capacity of MOFs from these easy-measured variables. Therefore, this study introduces several straightforward and accurate artificial intelligence (AI) techniques to fill this gap, initially determining the appropriate topology of AI-based methods, then comparing their performances by statistical criteria, and introducing the most accurate. This study used artificial neural networks, hybrid neuro-fuzzy systems, and support vector machines as estimators. The general regression neural networks (GRNN) with a spread of 7.92 × 10−4 shows the highest correlation with the literature data and provides a relative absolute deviation of 5.34%, mean squared error of 0.059, and coefficient of determination of 0.9946." @default.
- W3199341331 created "2021-09-27" @default.
- W3199341331 creator A5025217055 @default.
- W3199341331 creator A5028799043 @default.
- W3199341331 creator A5037047253 @default.
- W3199341331 creator A5051307569 @default.
- W3199341331 creator A5055383724 @default.
- W3199341331 creator A5060122353 @default.
- W3199341331 creator A5067732614 @default.
- W3199341331 date "2021-10-01" @default.
- W3199341331 modified "2023-10-14" @default.
- W3199341331 title "Potential application of metal-organic frameworks (MOFs) for hydrogen storage: Simulation by artificial intelligent techniques" @default.
- W3199341331 cites W1689229332 @default.
- W3199341331 cites W1965926928 @default.
- W3199341331 cites W1966560190 @default.
- W3199341331 cites W1975501285 @default.
- W3199341331 cites W2002319969 @default.
- W3199341331 cites W2006198120 @default.
- W3199341331 cites W2016077265 @default.
- W3199341331 cites W2023706896 @default.
- W3199341331 cites W2029801111 @default.
- W3199341331 cites W2039864454 @default.
- W3199341331 cites W2041091748 @default.
- W3199341331 cites W2052012429 @default.
- W3199341331 cites W2055817716 @default.
- W3199341331 cites W2055974394 @default.
- W3199341331 cites W2060325015 @default.
- W3199341331 cites W2075318533 @default.
- W3199341331 cites W2078962482 @default.
- W3199341331 cites W2086870787 @default.
- W3199341331 cites W2087628085 @default.
- W3199341331 cites W2090224095 @default.
- W3199341331 cites W2094796184 @default.
- W3199341331 cites W2105040691 @default.
- W3199341331 cites W2106259156 @default.
- W3199341331 cites W2110092243 @default.
- W3199341331 cites W2149723649 @default.
- W3199341331 cites W2157942880 @default.
- W3199341331 cites W2207449618 @default.
- W3199341331 cites W2316126360 @default.
- W3199341331 cites W2317125696 @default.
- W3199341331 cites W2432932943 @default.
- W3199341331 cites W2525633259 @default.
- W3199341331 cites W2561383859 @default.
- W3199341331 cites W2593134243 @default.
- W3199341331 cites W2595933288 @default.
- W3199341331 cites W2604649198 @default.
- W3199341331 cites W2608353086 @default.
- W3199341331 cites W2626170920 @default.
- W3199341331 cites W2742477205 @default.
- W3199341331 cites W2748308913 @default.
- W3199341331 cites W2756398738 @default.
- W3199341331 cites W2756818877 @default.
- W3199341331 cites W2767080071 @default.
- W3199341331 cites W2771587958 @default.
- W3199341331 cites W2773564180 @default.
- W3199341331 cites W2791064936 @default.
- W3199341331 cites W2802626355 @default.
- W3199341331 cites W2858547974 @default.
- W3199341331 cites W2885373405 @default.
- W3199341331 cites W2899354085 @default.
- W3199341331 cites W2922138028 @default.
- W3199341331 cites W2927492597 @default.
- W3199341331 cites W2951046190 @default.
- W3199341331 cites W2961267244 @default.
- W3199341331 cites W2987934112 @default.
- W3199341331 cites W3038583522 @default.
- W3199341331 cites W3059741262 @default.
- W3199341331 cites W3095982085 @default.
- W3199341331 cites W3120471101 @default.
- W3199341331 cites W3133899235 @default.
- W3199341331 cites W3136714975 @default.
- W3199341331 cites W3154777774 @default.
- W3199341331 cites W3158845007 @default.
- W3199341331 cites W3161603338 @default.
- W3199341331 cites W3164676097 @default.
- W3199341331 cites W3165096024 @default.
- W3199341331 cites W3176300810 @default.
- W3199341331 cites W3178032790 @default.
- W3199341331 cites W3185971715 @default.
- W3199341331 cites W3186687138 @default.
- W3199341331 cites W3193421502 @default.
- W3199341331 doi "https://doi.org/10.1016/j.ijhydene.2021.08.167" @default.
- W3199341331 hasPublicationYear "2021" @default.
- W3199341331 type Work @default.
- W3199341331 sameAs 3199341331 @default.
- W3199341331 citedByCount "15" @default.
- W3199341331 countsByYear W31993413312022 @default.
- W3199341331 countsByYear W31993413312023 @default.
- W3199341331 crossrefType "journal-article" @default.
- W3199341331 hasAuthorship W3199341331A5025217055 @default.
- W3199341331 hasAuthorship W3199341331A5028799043 @default.
- W3199341331 hasAuthorship W3199341331A5037047253 @default.
- W3199341331 hasAuthorship W3199341331A5051307569 @default.
- W3199341331 hasAuthorship W3199341331A5055383724 @default.
- W3199341331 hasAuthorship W3199341331A5060122353 @default.
- W3199341331 hasAuthorship W3199341331A5067732614 @default.
- W3199341331 hasConcept C105795698 @default.