Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199384803> ?p ?o ?g. }
- W3199384803 endingPage "520" @default.
- W3199384803 startingPage "502" @default.
- W3199384803 abstract "Deep learning (DL) models have achieved impressive performance in various domains such as medicine, finance, and autonomous vehicle systems with advances in computing power and technologies. However, due to the black-box structure of DL models, the decisions of these learning models often need to be explained to end-users. Explainable Artificial Intelligence (XAI) provides explanations of black-box models to reveal the behavior and underlying decision-making mechanisms of the models through tools, techniques, and algorithms. Visualization techniques help to present model and prediction explanations in a more understandable, explainable, and interpretable way. This survey paper aims to review current trends and challenges of visual analytics in interpreting DL models by adopting XAI methods and present future research directions in this area. We reviewed literature based on two different aspects, model usage and visual approaches. We addressed several research questions based on our findings and then discussed missing points, research gaps, and potential future research directions. This survey provides guidelines to develop a better interpretation of neural networks through XAI methods in the field of visual analytics." @default.
- W3199384803 created "2021-09-27" @default.
- W3199384803 creator A5016908904 @default.
- W3199384803 creator A5031068301 @default.
- W3199384803 date "2022-02-01" @default.
- W3199384803 modified "2023-10-16" @default.
- W3199384803 title "A survey of visual analytics for Explainable Artificial Intelligence methods" @default.
- W3199384803 cites W1787224781 @default.
- W3199384803 cites W1966087765 @default.
- W3199384803 cites W2012457675 @default.
- W3199384803 cites W2118022153 @default.
- W3199384803 cites W2162825485 @default.
- W3199384803 cites W2343061342 @default.
- W3199384803 cites W2512274390 @default.
- W3199384803 cites W2607223307 @default.
- W3199384803 cites W2625478334 @default.
- W3199384803 cites W2751298778 @default.
- W3199384803 cites W2751642492 @default.
- W3199384803 cites W2752194699 @default.
- W3199384803 cites W2752332392 @default.
- W3199384803 cites W2804604520 @default.
- W3199384803 cites W2883424428 @default.
- W3199384803 cites W2886614482 @default.
- W3199384803 cites W2888685797 @default.
- W3199384803 cites W2889326414 @default.
- W3199384803 cites W2891130433 @default.
- W3199384803 cites W2891503716 @default.
- W3199384803 cites W2895658904 @default.
- W3199384803 cites W2910890213 @default.
- W3199384803 cites W2921712231 @default.
- W3199384803 cites W2944544072 @default.
- W3199384803 cites W2947012480 @default.
- W3199384803 cites W2963095307 @default.
- W3199384803 cites W2963214037 @default.
- W3199384803 cites W2963707011 @default.
- W3199384803 cites W2969224142 @default.
- W3199384803 cites W2972615418 @default.
- W3199384803 cites W2973221207 @default.
- W3199384803 cites W2981731882 @default.
- W3199384803 cites W2994898777 @default.
- W3199384803 cites W2997535401 @default.
- W3199384803 cites W3008695158 @default.
- W3199384803 cites W3011179515 @default.
- W3199384803 cites W3017357696 @default.
- W3199384803 cites W3021941048 @default.
- W3199384803 cites W3034069517 @default.
- W3199384803 cites W3041378136 @default.
- W3199384803 cites W3046761449 @default.
- W3199384803 cites W3081876271 @default.
- W3199384803 cites W3092242892 @default.
- W3199384803 cites W3102564565 @default.
- W3199384803 cites W3108010663 @default.
- W3199384803 cites W3120379296 @default.
- W3199384803 doi "https://doi.org/10.1016/j.cag.2021.09.002" @default.
- W3199384803 hasPublicationYear "2022" @default.
- W3199384803 type Work @default.
- W3199384803 sameAs 3199384803 @default.
- W3199384803 citedByCount "50" @default.
- W3199384803 countsByYear W31993848032021 @default.
- W3199384803 countsByYear W31993848032022 @default.
- W3199384803 countsByYear W31993848032023 @default.
- W3199384803 crossrefType "journal-article" @default.
- W3199384803 hasAuthorship W3199384803A5016908904 @default.
- W3199384803 hasAuthorship W3199384803A5031068301 @default.
- W3199384803 hasConcept C119857082 @default.
- W3199384803 hasConcept C127413603 @default.
- W3199384803 hasConcept C154945302 @default.
- W3199384803 hasConcept C199360897 @default.
- W3199384803 hasConcept C202444582 @default.
- W3199384803 hasConcept C2522767166 @default.
- W3199384803 hasConcept C33923547 @default.
- W3199384803 hasConcept C36464697 @default.
- W3199384803 hasConcept C41008148 @default.
- W3199384803 hasConcept C527412718 @default.
- W3199384803 hasConcept C539667460 @default.
- W3199384803 hasConcept C59732488 @default.
- W3199384803 hasConcept C79158427 @default.
- W3199384803 hasConcept C94966114 @default.
- W3199384803 hasConcept C9652623 @default.
- W3199384803 hasConceptScore W3199384803C119857082 @default.
- W3199384803 hasConceptScore W3199384803C127413603 @default.
- W3199384803 hasConceptScore W3199384803C154945302 @default.
- W3199384803 hasConceptScore W3199384803C199360897 @default.
- W3199384803 hasConceptScore W3199384803C202444582 @default.
- W3199384803 hasConceptScore W3199384803C2522767166 @default.
- W3199384803 hasConceptScore W3199384803C33923547 @default.
- W3199384803 hasConceptScore W3199384803C36464697 @default.
- W3199384803 hasConceptScore W3199384803C41008148 @default.
- W3199384803 hasConceptScore W3199384803C527412718 @default.
- W3199384803 hasConceptScore W3199384803C539667460 @default.
- W3199384803 hasConceptScore W3199384803C59732488 @default.
- W3199384803 hasConceptScore W3199384803C79158427 @default.
- W3199384803 hasConceptScore W3199384803C94966114 @default.
- W3199384803 hasConceptScore W3199384803C9652623 @default.
- W3199384803 hasLocation W31993848031 @default.
- W3199384803 hasOpenAccess W3199384803 @default.
- W3199384803 hasPrimaryLocation W31993848031 @default.
- W3199384803 hasRelatedWork W2064719069 @default.