Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199437557> ?p ?o ?g. }
- W3199437557 abstract "The numerical simulation of multiple scenarios easily becomes computationally prohibitive for cardiac electrophysiology (EP) problems if relying on usual high-fidelity, full order models (FOMs). Likewise, the use of traditional reduced order models (ROMs) for parametrized PDEs to speed up the solution of the aforementioned problems can be problematic. This is primarily due to the strong variability characterizing the solution set and to the nonlinear nature of the input-output maps that we intend to reconstruct numerically. To enhance ROM efficiency, we proposed a new generation of non-intrusive, nonlinear ROMs, based on deep learning (DL) algorithms, such as convolutional, feedforward, and autoencoder neural networks. In the proposed DL-ROM, both the nonlinear solution manifold and the nonlinear reduced dynamics used to model the system evolution on that manifold can be learnt in a non-intrusive way thanks to DL algorithms trained on a set of FOM snapshots. DL-ROMs were shown to be able to accurately capture complex front propagation processes, both in physiological and pathological cardiac EP, very rapidly once neural networks were trained, however, at the expense of huge training costs. In this study, we show that performing a prior dimensionality reduction on FOM snapshots through randomized proper orthogonal decomposition (POD) enables to speed up training times and to decrease networks complexity. Accuracy and efficiency of this strategy, which we refer to as POD-DL-ROM, are assessed in the context of cardiac EP on an idealized left atrium (LA) geometry and considering snapshots arising from a NURBS (non-uniform rational B-splines)-based isogeometric analysis (IGA) discretization. Once the ROMs have been trained, POD-DL-ROMs can efficiently solve both physiological and pathological cardiac EP problems, for any new scenario, in real-time, even in extremely challenging contexts such as those featuring circuit re-entries, that are among the factors triggering cardiac arrhythmias." @default.
- W3199437557 created "2021-09-27" @default.
- W3199437557 creator A5013754088 @default.
- W3199437557 creator A5034191028 @default.
- W3199437557 creator A5040645637 @default.
- W3199437557 creator A5082126056 @default.
- W3199437557 date "2021-09-22" @default.
- W3199437557 modified "2023-10-13" @default.
- W3199437557 title "POD-Enhanced Deep Learning-Based Reduced Order Models for the Real-Time Simulation of Cardiac Electrophysiology in the Left Atrium" @default.
- W3199437557 cites W1976044168 @default.
- W3199437557 cites W1977098804 @default.
- W3199437557 cites W1990850630 @default.
- W3199437557 cites W2009375605 @default.
- W3199437557 cites W2014514899 @default.
- W3199437557 cites W2021611778 @default.
- W3199437557 cites W2029856200 @default.
- W3199437557 cites W2034287343 @default.
- W3199437557 cites W2048885193 @default.
- W3199437557 cites W2061191702 @default.
- W3199437557 cites W2062206620 @default.
- W3199437557 cites W2064133871 @default.
- W3199437557 cites W2078242986 @default.
- W3199437557 cites W2080148075 @default.
- W3199437557 cites W2093078331 @default.
- W3199437557 cites W2096585592 @default.
- W3199437557 cites W2101527068 @default.
- W3199437557 cites W2117756735 @default.
- W3199437557 cites W2158417622 @default.
- W3199437557 cites W2161023180 @default.
- W3199437557 cites W2163071496 @default.
- W3199437557 cites W2249639841 @default.
- W3199437557 cites W2326313759 @default.
- W3199437557 cites W2367512715 @default.
- W3199437557 cites W2462546600 @default.
- W3199437557 cites W2521029850 @default.
- W3199437557 cites W2562416626 @default.
- W3199437557 cites W2585298970 @default.
- W3199437557 cites W2611710652 @default.
- W3199437557 cites W2787230676 @default.
- W3199437557 cites W2809267379 @default.
- W3199437557 cites W2888118590 @default.
- W3199437557 cites W2888822935 @default.
- W3199437557 cites W2890640262 @default.
- W3199437557 cites W2896792008 @default.
- W3199437557 cites W2900895506 @default.
- W3199437557 cites W2947025839 @default.
- W3199437557 cites W2985630280 @default.
- W3199437557 cites W2986795381 @default.
- W3199437557 cites W2997248815 @default.
- W3199437557 cites W3008118574 @default.
- W3199437557 cites W3027941160 @default.
- W3199437557 cites W3033210176 @default.
- W3199437557 cites W3037817333 @default.
- W3199437557 cites W3102140816 @default.
- W3199437557 cites W3123883114 @default.
- W3199437557 cites W3125591332 @default.
- W3199437557 cites W3153519416 @default.
- W3199437557 cites W3176105372 @default.
- W3199437557 cites W3184635942 @default.
- W3199437557 cites W3206057793 @default.
- W3199437557 cites W4237713727 @default.
- W3199437557 cites W4240395309 @default.
- W3199437557 cites W4250467315 @default.
- W3199437557 cites W4289812957 @default.
- W3199437557 cites W4292079189 @default.
- W3199437557 doi "https://doi.org/10.3389/fphys.2021.679076" @default.
- W3199437557 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8493298" @default.
- W3199437557 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34630131" @default.
- W3199437557 hasPublicationYear "2021" @default.
- W3199437557 type Work @default.
- W3199437557 sameAs 3199437557 @default.
- W3199437557 citedByCount "11" @default.
- W3199437557 countsByYear W31994375572022 @default.
- W3199437557 countsByYear W31994375572023 @default.
- W3199437557 crossrefType "journal-article" @default.
- W3199437557 hasAuthorship W3199437557A5013754088 @default.
- W3199437557 hasAuthorship W3199437557A5034191028 @default.
- W3199437557 hasAuthorship W3199437557A5040645637 @default.
- W3199437557 hasAuthorship W3199437557A5082126056 @default.
- W3199437557 hasBestOaLocation W31994375571 @default.
- W3199437557 hasConcept C101738243 @default.
- W3199437557 hasConcept C108583219 @default.
- W3199437557 hasConcept C11413529 @default.
- W3199437557 hasConcept C121332964 @default.
- W3199437557 hasConcept C126322002 @default.
- W3199437557 hasConcept C127413603 @default.
- W3199437557 hasConcept C133731056 @default.
- W3199437557 hasConcept C151730666 @default.
- W3199437557 hasConcept C154945302 @default.
- W3199437557 hasConcept C158622935 @default.
- W3199437557 hasConcept C177264268 @default.
- W3199437557 hasConcept C17744445 @default.
- W3199437557 hasConcept C185263204 @default.
- W3199437557 hasConcept C199360897 @default.
- W3199437557 hasConcept C199539241 @default.
- W3199437557 hasConcept C2775924081 @default.
- W3199437557 hasConcept C2776359362 @default.
- W3199437557 hasConcept C2779277453 @default.
- W3199437557 hasConcept C2779343474 @default.
- W3199437557 hasConcept C38858127 @default.