Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199443318> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3199443318 endingPage "103901" @default.
- W3199443318 startingPage "103901" @default.
- W3199443318 abstract "Fatigue of operators due to intensive workloads and long working time is a significant constraint that leads to inefficient crane operations and increased risk of safety issues. It can be potentially prevented through early warnings of fatigue for further appropriate work shift arrangements. Many deep neural networks have recently been developed for the fatigue detection of vehicle drivers through training and processing the facial image or video data from the public driver's datasets. However, these datasets are difficult to directly use for the fatigue detections under crane operation scenarios due to the variations of facial features and head movement patterns between crane operators and vehicle drivers. Furthermore, there is no representative and public dataset with the facial information of crane operators under construction scenarios. Therefore, this study aims to explore and analyse the features of multi-sources datasets and the corresponding data acquisition methods which are suitable for crane operators' fatigue detection, further providing collection guidelines of crane operators dataset. Variations on public datasets such as real or pretend facial expression, the segment level of human-verified labelling, camera positions, acquisition scenarios, and illumination conditions are analysed. A hybrid learning architecture is proposed by combining convolutional neural networks (CNN) and long short-term memory (LSTM) for fatigue detection. In order to establish a unified evaluation criterion, the effort of the study includes relabelling three public vehicle drivers datasets, NTHU-DDD, UTA-RLDD, and YawnDD, with human-verified labels at the frame and minute segment levels, and training the corresponding hybrid fatigue detection models accordingly. The average detection accuracies and losses are identified for the trained models of UTA-RLDD, NTHU-DDD, and YawnDD individually. The trained models are used to evaluate the fatigue status of facial videos from licensed crane operators under simulated crane operation scenarios. The results suggest the necessary considerations of different influential factors for establishing a large and public fatigue dataset for crane operators." @default.
- W3199443318 created "2021-09-27" @default.
- W3199443318 creator A5026653269 @default.
- W3199443318 creator A5049267992 @default.
- W3199443318 creator A5082239567 @default.
- W3199443318 creator A5091087881 @default.
- W3199443318 date "2021-12-01" @default.
- W3199443318 modified "2023-10-16" @default.
- W3199443318 title "Effects of dataset characteristics on the performance of fatigue detection for crane operators using hybrid deep neural networks" @default.
- W3199443318 cites W1689711448 @default.
- W3199443318 cites W1983364832 @default.
- W3199443318 cites W1985441869 @default.
- W3199443318 cites W1988020212 @default.
- W3199443318 cites W1999807239 @default.
- W3199443318 cites W2025623975 @default.
- W3199443318 cites W2033438484 @default.
- W3199443318 cites W2042425579 @default.
- W3199443318 cites W2050134603 @default.
- W3199443318 cites W2058580716 @default.
- W3199443318 cites W2059498477 @default.
- W3199443318 cites W2064675550 @default.
- W3199443318 cites W2067135396 @default.
- W3199443318 cites W2087029069 @default.
- W3199443318 cites W2170131944 @default.
- W3199443318 cites W2190044943 @default.
- W3199443318 cites W2346607917 @default.
- W3199443318 cites W2507333996 @default.
- W3199443318 cites W2509932333 @default.
- W3199443318 cites W2883790098 @default.
- W3199443318 cites W2963166524 @default.
- W3199443318 cites W3027500411 @default.
- W3199443318 cites W3033646419 @default.
- W3199443318 cites W3101998545 @default.
- W3199443318 cites W4229527478 @default.
- W3199443318 cites W4376595545 @default.
- W3199443318 doi "https://doi.org/10.1016/j.autcon.2021.103901" @default.
- W3199443318 hasPublicationYear "2021" @default.
- W3199443318 type Work @default.
- W3199443318 sameAs 3199443318 @default.
- W3199443318 citedByCount "12" @default.
- W3199443318 countsByYear W31994433182022 @default.
- W3199443318 countsByYear W31994433182023 @default.
- W3199443318 crossrefType "journal-article" @default.
- W3199443318 hasAuthorship W3199443318A5026653269 @default.
- W3199443318 hasAuthorship W3199443318A5049267992 @default.
- W3199443318 hasAuthorship W3199443318A5082239567 @default.
- W3199443318 hasAuthorship W3199443318A5091087881 @default.
- W3199443318 hasConcept C108583219 @default.
- W3199443318 hasConcept C119857082 @default.
- W3199443318 hasConcept C126042441 @default.
- W3199443318 hasConcept C127413603 @default.
- W3199443318 hasConcept C147168706 @default.
- W3199443318 hasConcept C154945302 @default.
- W3199443318 hasConcept C195704467 @default.
- W3199443318 hasConcept C2776036281 @default.
- W3199443318 hasConcept C41008148 @default.
- W3199443318 hasConcept C50644808 @default.
- W3199443318 hasConcept C76155785 @default.
- W3199443318 hasConcept C78519656 @default.
- W3199443318 hasConcept C81363708 @default.
- W3199443318 hasConceptScore W3199443318C108583219 @default.
- W3199443318 hasConceptScore W3199443318C119857082 @default.
- W3199443318 hasConceptScore W3199443318C126042441 @default.
- W3199443318 hasConceptScore W3199443318C127413603 @default.
- W3199443318 hasConceptScore W3199443318C147168706 @default.
- W3199443318 hasConceptScore W3199443318C154945302 @default.
- W3199443318 hasConceptScore W3199443318C195704467 @default.
- W3199443318 hasConceptScore W3199443318C2776036281 @default.
- W3199443318 hasConceptScore W3199443318C41008148 @default.
- W3199443318 hasConceptScore W3199443318C50644808 @default.
- W3199443318 hasConceptScore W3199443318C76155785 @default.
- W3199443318 hasConceptScore W3199443318C78519656 @default.
- W3199443318 hasConceptScore W3199443318C81363708 @default.
- W3199443318 hasFunder F4320321592 @default.
- W3199443318 hasFunder F4320322598 @default.
- W3199443318 hasLocation W31994433181 @default.
- W3199443318 hasOpenAccess W3199443318 @default.
- W3199443318 hasPrimaryLocation W31994433181 @default.
- W3199443318 hasRelatedWork W1604550738 @default.
- W3199443318 hasRelatedWork W2337926734 @default.
- W3199443318 hasRelatedWork W2793022090 @default.
- W3199443318 hasRelatedWork W2919358988 @default.
- W3199443318 hasRelatedWork W3173182854 @default.
- W3199443318 hasRelatedWork W3180630304 @default.
- W3199443318 hasRelatedWork W4298168912 @default.
- W3199443318 hasRelatedWork W4311257506 @default.
- W3199443318 hasRelatedWork W4320802194 @default.
- W3199443318 hasRelatedWork W4366224123 @default.
- W3199443318 hasVolume "132" @default.
- W3199443318 isParatext "false" @default.
- W3199443318 isRetracted "false" @default.
- W3199443318 magId "3199443318" @default.
- W3199443318 workType "article" @default.