Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199453402> ?p ?o ?g. }
- W3199453402 abstract "Abstract Background Postpartum depression is a widespread disorder, adversely affecting the well-being of mothers and their newborns. We aim to utilize machine learning for predicting risk of postpartum depression (PPD) using primary care electronic health records (EHR) data, and to evaluate the potential value of EHR-based prediction in improving the accuracy of PPD screening and in early identification of women at risk. Methods We analyzed EHR data of 266,544 women from the UK who gave first live birth between 2000 and 2017. We extracted a multitude of socio-demographic and medical variables and constructed a machine learning model that predicts the risk of PPD during the year following childbirth. We evaluated the model’s performance using multiple validation methodologies and measured its accuracy as a stand-alone tool and as an adjunct to the standard questionnaire-based screening by Edinburgh postnatal depression scale (EPDS). Results The prevalence of PPD in the analyzed cohort was 13.4%. Combing EHR-based prediction with EPDS score increased the area under the receiver operator characteristics curve (AUC) from 0.805 to 0.844 and the sensitivity from 0.72 to 0.76, at specificity of 0.80. The AUC of the EHR-based prediction model alone varied from 0.72 to 0.74 and decreased by only 0.01–0.02 when applied as early as before the beginning of pregnancy. Conclusions PPD risk prediction using EHR data may provide a complementary quantitative and objective tool for PPD screening, allowing earlier (pre-pregnancy) and more accurate identification of women at risk, timely interventions and potentially improved outcomes for the mother and child." @default.
- W3199453402 created "2021-09-27" @default.
- W3199453402 creator A5014811389 @default.
- W3199453402 creator A5023333671 @default.
- W3199453402 creator A5030391846 @default.
- W3199453402 creator A5044532797 @default.
- W3199453402 creator A5051691741 @default.
- W3199453402 creator A5074115555 @default.
- W3199453402 creator A5081574925 @default.
- W3199453402 date "2021-09-17" @default.
- W3199453402 modified "2023-10-02" @default.
- W3199453402 title "Estimation of postpartum depression risk from electronic health records using machine learning" @default.
- W3199453402 cites W1783190234 @default.
- W3199453402 cites W1963808186 @default.
- W3199453402 cites W1983854352 @default.
- W3199453402 cites W1985329916 @default.
- W3199453402 cites W2051519772 @default.
- W3199453402 cites W2058315696 @default.
- W3199453402 cites W2098303391 @default.
- W3199453402 cites W2149264570 @default.
- W3199453402 cites W2170603819 @default.
- W3199453402 cites W2267691753 @default.
- W3199453402 cites W2602547845 @default.
- W3199453402 cites W2611232393 @default.
- W3199453402 cites W2791499613 @default.
- W3199453402 cites W2885511794 @default.
- W3199453402 cites W2898090599 @default.
- W3199453402 cites W2913785089 @default.
- W3199453402 cites W2917059778 @default.
- W3199453402 cites W2943494044 @default.
- W3199453402 cites W2946199706 @default.
- W3199453402 cites W2982250371 @default.
- W3199453402 cites W2984882139 @default.
- W3199453402 cites W2989636735 @default.
- W3199453402 cites W3003864713 @default.
- W3199453402 cites W3016955351 @default.
- W3199453402 cites W3102476541 @default.
- W3199453402 cites W3110914736 @default.
- W3199453402 cites W4239700635 @default.
- W3199453402 cites W4247944674 @default.
- W3199453402 cites W957392660 @default.
- W3199453402 doi "https://doi.org/10.1186/s12884-021-04087-8" @default.
- W3199453402 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8447665" @default.
- W3199453402 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34535116" @default.
- W3199453402 hasPublicationYear "2021" @default.
- W3199453402 type Work @default.
- W3199453402 sameAs 3199453402 @default.
- W3199453402 citedByCount "16" @default.
- W3199453402 countsByYear W31994534022022 @default.
- W3199453402 countsByYear W31994534022023 @default.
- W3199453402 crossrefType "journal-article" @default.
- W3199453402 hasAuthorship W3199453402A5014811389 @default.
- W3199453402 hasAuthorship W3199453402A5023333671 @default.
- W3199453402 hasAuthorship W3199453402A5030391846 @default.
- W3199453402 hasAuthorship W3199453402A5044532797 @default.
- W3199453402 hasAuthorship W3199453402A5051691741 @default.
- W3199453402 hasAuthorship W3199453402A5074115555 @default.
- W3199453402 hasAuthorship W3199453402A5081574925 @default.
- W3199453402 hasBestOaLocation W31994534021 @default.
- W3199453402 hasConcept C119857082 @default.
- W3199453402 hasConcept C126322002 @default.
- W3199453402 hasConcept C131872663 @default.
- W3199453402 hasConcept C195910791 @default.
- W3199453402 hasConcept C2776210078 @default.
- W3199453402 hasConcept C2776882568 @default.
- W3199453402 hasConcept C2779234561 @default.
- W3199453402 hasConcept C2779703513 @default.
- W3199453402 hasConcept C2780262536 @default.
- W3199453402 hasConcept C41008148 @default.
- W3199453402 hasConcept C54355233 @default.
- W3199453402 hasConcept C58471807 @default.
- W3199453402 hasConcept C71924100 @default.
- W3199453402 hasConcept C72563966 @default.
- W3199453402 hasConcept C86803240 @default.
- W3199453402 hasConceptScore W3199453402C119857082 @default.
- W3199453402 hasConceptScore W3199453402C126322002 @default.
- W3199453402 hasConceptScore W3199453402C131872663 @default.
- W3199453402 hasConceptScore W3199453402C195910791 @default.
- W3199453402 hasConceptScore W3199453402C2776210078 @default.
- W3199453402 hasConceptScore W3199453402C2776882568 @default.
- W3199453402 hasConceptScore W3199453402C2779234561 @default.
- W3199453402 hasConceptScore W3199453402C2779703513 @default.
- W3199453402 hasConceptScore W3199453402C2780262536 @default.
- W3199453402 hasConceptScore W3199453402C41008148 @default.
- W3199453402 hasConceptScore W3199453402C54355233 @default.
- W3199453402 hasConceptScore W3199453402C58471807 @default.
- W3199453402 hasConceptScore W3199453402C71924100 @default.
- W3199453402 hasConceptScore W3199453402C72563966 @default.
- W3199453402 hasConceptScore W3199453402C86803240 @default.
- W3199453402 hasIssue "1" @default.
- W3199453402 hasLocation W31994534021 @default.
- W3199453402 hasLocation W31994534022 @default.
- W3199453402 hasLocation W31994534023 @default.
- W3199453402 hasLocation W31994534024 @default.
- W3199453402 hasOpenAccess W3199453402 @default.
- W3199453402 hasPrimaryLocation W31994534021 @default.
- W3199453402 hasRelatedWork W1982181022 @default.
- W3199453402 hasRelatedWork W1988643756 @default.
- W3199453402 hasRelatedWork W2038825369 @default.
- W3199453402 hasRelatedWork W2598893829 @default.