Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199460215> ?p ?o ?g. }
- W3199460215 endingPage "79" @default.
- W3199460215 startingPage "62" @default.
- W3199460215 abstract "Both traditional and the latest speech emotion recognition methods face the same problem, that is, the lack of standard emotion speech data sets. This leads to the network being unable to learn emotion features comprehensively because of limited data. Moreover, in these methods, the time required for training is extremely long, which makes it difficult to ensure efficient classification. The proposed network Dense-DCNN, combined with StarGAN, can address this issue. StarGAN is used to generate numerous Log-Mel spectra with related emotions and extract high-dimensional features through the Dense-DCNN to achieve a high-precision classification. The classification accuracy for all the data sets was more than 90%. Simultaneously, DenseNet's layer jump connection can speed up the classification process, thereby improving efficiency. The experimental verification shows that our model not only has good generalisation ability but also exhibits good robustness in multiscene and multinoise environments, thereby showing potential for application in medical and social education industries." @default.
- W3199460215 created "2021-09-27" @default.
- W3199460215 creator A5002059009 @default.
- W3199460215 creator A5036815945 @default.
- W3199460215 creator A5037041659 @default.
- W3199460215 creator A5044186852 @default.
- W3199460215 creator A5086789945 @default.
- W3199460215 date "2021-09-14" @default.
- W3199460215 modified "2023-10-16" @default.
- W3199460215 title "Emotion recognition from speech with StarGAN and Dense‐DCNN" @default.
- W3199460215 cites W1600744878 @default.
- W3199460215 cites W175750906 @default.
- W3199460215 cites W1785074626 @default.
- W3199460215 cites W1923034539 @default.
- W3199460215 cites W1972280480 @default.
- W3199460215 cites W1997900929 @default.
- W3199460215 cites W2009059481 @default.
- W3199460215 cites W2087618018 @default.
- W3199460215 cites W2111926505 @default.
- W3199460215 cites W2119534679 @default.
- W3199460215 cites W2172097686 @default.
- W3199460215 cites W2177486042 @default.
- W3199460215 cites W2295001676 @default.
- W3199460215 cites W2398826216 @default.
- W3199460215 cites W2399733683 @default.
- W3199460215 cites W2408520939 @default.
- W3199460215 cites W2479456942 @default.
- W3199460215 cites W2507436421 @default.
- W3199460215 cites W2747664154 @default.
- W3199460215 cites W2803193013 @default.
- W3199460215 cites W2883162668 @default.
- W3199460215 cites W2886696774 @default.
- W3199460215 cites W2892370324 @default.
- W3199460215 cites W2936451900 @default.
- W3199460215 cites W2939129695 @default.
- W3199460215 cites W2963217176 @default.
- W3199460215 cites W2963446712 @default.
- W3199460215 cites W2963539064 @default.
- W3199460215 cites W2963767194 @default.
- W3199460215 cites W2970737019 @default.
- W3199460215 cites W2972640480 @default.
- W3199460215 cites W2972691009 @default.
- W3199460215 cites W2979562115 @default.
- W3199460215 cites W3022013598 @default.
- W3199460215 cites W3034924009 @default.
- W3199460215 cites W3047042937 @default.
- W3199460215 cites W3087893031 @default.
- W3199460215 cites W3094312606 @default.
- W3199460215 cites W3096018771 @default.
- W3199460215 doi "https://doi.org/10.1049/sil2.12078" @default.
- W3199460215 hasPublicationYear "2021" @default.
- W3199460215 type Work @default.
- W3199460215 sameAs 3199460215 @default.
- W3199460215 citedByCount "2" @default.
- W3199460215 countsByYear W31994602152022 @default.
- W3199460215 countsByYear W31994602152023 @default.
- W3199460215 crossrefType "journal-article" @default.
- W3199460215 hasAuthorship W3199460215A5002059009 @default.
- W3199460215 hasAuthorship W3199460215A5036815945 @default.
- W3199460215 hasAuthorship W3199460215A5037041659 @default.
- W3199460215 hasAuthorship W3199460215A5044186852 @default.
- W3199460215 hasAuthorship W3199460215A5086789945 @default.
- W3199460215 hasBestOaLocation W31994602151 @default.
- W3199460215 hasConcept C104317684 @default.
- W3199460215 hasConcept C111919701 @default.
- W3199460215 hasConcept C119857082 @default.
- W3199460215 hasConcept C153180895 @default.
- W3199460215 hasConcept C154945302 @default.
- W3199460215 hasConcept C185592680 @default.
- W3199460215 hasConcept C206310091 @default.
- W3199460215 hasConcept C2776145971 @default.
- W3199460215 hasConcept C2777438025 @default.
- W3199460215 hasConcept C28490314 @default.
- W3199460215 hasConcept C41008148 @default.
- W3199460215 hasConcept C51632099 @default.
- W3199460215 hasConcept C55493867 @default.
- W3199460215 hasConcept C63479239 @default.
- W3199460215 hasConcept C98045186 @default.
- W3199460215 hasConceptScore W3199460215C104317684 @default.
- W3199460215 hasConceptScore W3199460215C111919701 @default.
- W3199460215 hasConceptScore W3199460215C119857082 @default.
- W3199460215 hasConceptScore W3199460215C153180895 @default.
- W3199460215 hasConceptScore W3199460215C154945302 @default.
- W3199460215 hasConceptScore W3199460215C185592680 @default.
- W3199460215 hasConceptScore W3199460215C206310091 @default.
- W3199460215 hasConceptScore W3199460215C2776145971 @default.
- W3199460215 hasConceptScore W3199460215C2777438025 @default.
- W3199460215 hasConceptScore W3199460215C28490314 @default.
- W3199460215 hasConceptScore W3199460215C41008148 @default.
- W3199460215 hasConceptScore W3199460215C51632099 @default.
- W3199460215 hasConceptScore W3199460215C55493867 @default.
- W3199460215 hasConceptScore W3199460215C63479239 @default.
- W3199460215 hasConceptScore W3199460215C98045186 @default.
- W3199460215 hasIssue "1" @default.
- W3199460215 hasLocation W31994602151 @default.
- W3199460215 hasLocation W31994602152 @default.
- W3199460215 hasOpenAccess W3199460215 @default.
- W3199460215 hasPrimaryLocation W31994602151 @default.