Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199489311> ?p ?o ?g. }
- W3199489311 endingPage "6042" @default.
- W3199489311 startingPage "6042" @default.
- W3199489311 abstract "The climate of Houston, classified as a humid subtropical climate with tropical influences, makes the heating, ventilation, and air conditioning (HVAC) systems the largest electricity consumers in buildings. HVAC systems in commercial buildings are usually operated by a centralized control system and/or an energy management system based on a fixed schedule and scheduled control of a zone setpoint, which is not appropriate for many buildings with changing occupancy rates. Lately, as part of energy efficiency analysis, attention has focused on collecting and analyzing smart meters and building-related data, as well as applying supervised learning techniques, to propose new strategies to operate HVAC systems and reduce energy consumption. On the other hand, unsupervised learning techniques have been used to study the consumption information and profile characterization of different buildings after cluster analysis is performed. This paper adopts a different approach by revealing the power of unsupervised learning to cluster data and unveiling hidden patterns. In this study, we also identify energy inefficiencies after exploring the cluster results of a single building’s HVAC consumption data and building usage data as part of the energy efficiency analysis. Time series analysis and the K-means clustering algorithm are successfully applied to identify new energy-saving opportunities in a highly efficient office building located in the Houston area (TX, USA). The paper uses 1-year data from a highly efficient Leadership in Energy and Environment Design (LEED)-, Energy Star-, and Net Zero-certified building, showing a potential energy savings of 6% using the K-means algorithm. The results show that clustering is instrumental in helping building managers identify potential additional energy savings." @default.
- W3199489311 created "2021-09-27" @default.
- W3199489311 creator A5016516110 @default.
- W3199489311 creator A5023218282 @default.
- W3199489311 creator A5024104536 @default.
- W3199489311 creator A5042094709 @default.
- W3199489311 creator A5056342867 @default.
- W3199489311 date "2021-09-23" @default.
- W3199489311 modified "2023-10-10" @default.
- W3199489311 title "Smart Building Energy Inefficiencies Detection through Time Series Analysis and Unsupervised Machine Learning" @default.
- W3199489311 cites W1490049104 @default.
- W3199489311 cites W1983377448 @default.
- W3199489311 cites W2001997818 @default.
- W3199489311 cites W2003591606 @default.
- W3199489311 cites W2043658046 @default.
- W3199489311 cites W2047143310 @default.
- W3199489311 cites W2062690987 @default.
- W3199489311 cites W2067796160 @default.
- W3199489311 cites W2078627859 @default.
- W3199489311 cites W2108399535 @default.
- W3199489311 cites W2139899671 @default.
- W3199489311 cites W2166786753 @default.
- W3199489311 cites W2553562988 @default.
- W3199489311 cites W2742688473 @default.
- W3199489311 cites W2767762556 @default.
- W3199489311 cites W2789880759 @default.
- W3199489311 cites W2795856038 @default.
- W3199489311 cites W2810043223 @default.
- W3199489311 cites W2897305320 @default.
- W3199489311 cites W2898200171 @default.
- W3199489311 cites W2910125217 @default.
- W3199489311 cites W2918964466 @default.
- W3199489311 cites W2926397283 @default.
- W3199489311 cites W2936511933 @default.
- W3199489311 cites W2949488362 @default.
- W3199489311 cites W2954240174 @default.
- W3199489311 cites W3022744454 @default.
- W3199489311 cites W4239443241 @default.
- W3199489311 cites W4252163989 @default.
- W3199489311 doi "https://doi.org/10.3390/en14196042" @default.
- W3199489311 hasPublicationYear "2021" @default.
- W3199489311 type Work @default.
- W3199489311 sameAs 3199489311 @default.
- W3199489311 citedByCount "14" @default.
- W3199489311 countsByYear W31994893112021 @default.
- W3199489311 countsByYear W31994893112022 @default.
- W3199489311 countsByYear W31994893112023 @default.
- W3199489311 crossrefType "journal-article" @default.
- W3199489311 hasAuthorship W3199489311A5016516110 @default.
- W3199489311 hasAuthorship W3199489311A5023218282 @default.
- W3199489311 hasAuthorship W3199489311A5024104536 @default.
- W3199489311 hasAuthorship W3199489311A5042094709 @default.
- W3199489311 hasAuthorship W3199489311A5056342867 @default.
- W3199489311 hasBestOaLocation W31994893111 @default.
- W3199489311 hasConcept C103742991 @default.
- W3199489311 hasConcept C106527866 @default.
- W3199489311 hasConcept C119599485 @default.
- W3199489311 hasConcept C119857082 @default.
- W3199489311 hasConcept C121332964 @default.
- W3199489311 hasConcept C122346748 @default.
- W3199489311 hasConcept C12302492 @default.
- W3199489311 hasConcept C127413603 @default.
- W3199489311 hasConcept C154945302 @default.
- W3199489311 hasConcept C2742236 @default.
- W3199489311 hasConcept C2775924081 @default.
- W3199489311 hasConcept C2780150128 @default.
- W3199489311 hasConcept C2780165032 @default.
- W3199489311 hasConcept C41008148 @default.
- W3199489311 hasConcept C50644808 @default.
- W3199489311 hasConcept C73555534 @default.
- W3199489311 hasConcept C78519656 @default.
- W3199489311 hasConcept C8038995 @default.
- W3199489311 hasConcept C83931994 @default.
- W3199489311 hasConcept C97355855 @default.
- W3199489311 hasConceptScore W3199489311C103742991 @default.
- W3199489311 hasConceptScore W3199489311C106527866 @default.
- W3199489311 hasConceptScore W3199489311C119599485 @default.
- W3199489311 hasConceptScore W3199489311C119857082 @default.
- W3199489311 hasConceptScore W3199489311C121332964 @default.
- W3199489311 hasConceptScore W3199489311C122346748 @default.
- W3199489311 hasConceptScore W3199489311C12302492 @default.
- W3199489311 hasConceptScore W3199489311C127413603 @default.
- W3199489311 hasConceptScore W3199489311C154945302 @default.
- W3199489311 hasConceptScore W3199489311C2742236 @default.
- W3199489311 hasConceptScore W3199489311C2775924081 @default.
- W3199489311 hasConceptScore W3199489311C2780150128 @default.
- W3199489311 hasConceptScore W3199489311C2780165032 @default.
- W3199489311 hasConceptScore W3199489311C41008148 @default.
- W3199489311 hasConceptScore W3199489311C50644808 @default.
- W3199489311 hasConceptScore W3199489311C73555534 @default.
- W3199489311 hasConceptScore W3199489311C78519656 @default.
- W3199489311 hasConceptScore W3199489311C8038995 @default.
- W3199489311 hasConceptScore W3199489311C83931994 @default.
- W3199489311 hasConceptScore W3199489311C97355855 @default.
- W3199489311 hasIssue "19" @default.
- W3199489311 hasLocation W31994893111 @default.
- W3199489311 hasLocation W31994893112 @default.
- W3199489311 hasLocation W31994893113 @default.