Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199492808> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3199492808 endingPage "661" @default.
- W3199492808 startingPage "646" @default.
- W3199492808 abstract "In this research paper the researcher builds a predictive model on churn customers using SMOTE and XG-Boost additive model and machine learning techniques in Telecommunication Industries. Customer’s churning is one of the global research issues in telecommunication industries. In somehow customers are not satisfying from telecommunication customer services, call rate, international plan, data pack, and others which are having a significant impact on customer’s services. The researcher used the SMOTE and XGboost technique to handle the imbalanced dataset and gives the higher-level accuracy for predictive model to identify the category of customer whether they are in churn or not churn. The researcher used the comparative study between logistics regression and random forest algorithms to classify the category of churn customers and non-churn customers in Telecommunication Industries. The predictive model is verifying at 96% accuracy level and can be capable to handle imbalance dataset. As per the data analysis the score of the confusion matrix is such as accuracy 94%, Precision for “ did not leave “ is 0.97 whereas recall is 0.96, and F1score is 0.97 with the support features of 903. For the churn customers precision is 0.80, recall is 0.81, F1-score is 0.80 and support features is 160, the data analysis report shows that the predictive model is having 94% accuracy whereas at 6% does not predict accurately about the customers status. Finally, the researcher concluded that the predictive model is more accurate and can be capable to handle imbalance dataset. The researchers assure that the predictive model would be benefited for the telecommunication industries to categories the churn/ non-churn customers and accordingly the organization can make changes their business plan and policies which would be benefited for the customers." @default.
- W3199492808 created "2021-09-27" @default.
- W3199492808 creator A5035394388 @default.
- W3199492808 creator A5035499609 @default.
- W3199492808 date "2021-08-07" @default.
- W3199492808 modified "2023-09-27" @default.
- W3199492808 title "Predictive Model on Churn Customers using SMOTE and XG-Boost Additive Model and Machine Learning Techniques in Telecommunication Industries" @default.
- W3199492808 cites W1989049108 @default.
- W3199492808 cites W1990788070 @default.
- W3199492808 cites W1997919326 @default.
- W3199492808 cites W2005755239 @default.
- W3199492808 cites W2006762481 @default.
- W3199492808 cites W2052309873 @default.
- W3199492808 cites W2061798849 @default.
- W3199492808 cites W2069300565 @default.
- W3199492808 cites W2071552263 @default.
- W3199492808 cites W2075150581 @default.
- W3199492808 cites W2075364988 @default.
- W3199492808 cites W2080615002 @default.
- W3199492808 cites W2114357029 @default.
- W3199492808 cites W2115383008 @default.
- W3199492808 cites W2130482403 @default.
- W3199492808 cites W2145265950 @default.
- W3199492808 cites W2148061495 @default.
- W3199492808 cites W2160505632 @default.
- W3199492808 cites W2161634631 @default.
- W3199492808 cites W2171921035 @default.
- W3199492808 cites W2460450520 @default.
- W3199492808 cites W3123614577 @default.
- W3199492808 doi "https://doi.org/10.32628/ijsrst218498" @default.
- W3199492808 hasPublicationYear "2021" @default.
- W3199492808 type Work @default.
- W3199492808 sameAs 3199492808 @default.
- W3199492808 citedByCount "0" @default.
- W3199492808 crossrefType "journal-article" @default.
- W3199492808 hasAuthorship W3199492808A5035394388 @default.
- W3199492808 hasAuthorship W3199492808A5035499609 @default.
- W3199492808 hasBestOaLocation W31994928081 @default.
- W3199492808 hasConcept C119857082 @default.
- W3199492808 hasConcept C12267149 @default.
- W3199492808 hasConcept C124101348 @default.
- W3199492808 hasConcept C138602881 @default.
- W3199492808 hasConcept C145236788 @default.
- W3199492808 hasConcept C154945302 @default.
- W3199492808 hasConcept C161664118 @default.
- W3199492808 hasConcept C162324750 @default.
- W3199492808 hasConcept C169258074 @default.
- W3199492808 hasConcept C41008148 @default.
- W3199492808 hasConcept C45804977 @default.
- W3199492808 hasConcept C76155785 @default.
- W3199492808 hasConcept C81669768 @default.
- W3199492808 hasConceptScore W3199492808C119857082 @default.
- W3199492808 hasConceptScore W3199492808C12267149 @default.
- W3199492808 hasConceptScore W3199492808C124101348 @default.
- W3199492808 hasConceptScore W3199492808C138602881 @default.
- W3199492808 hasConceptScore W3199492808C145236788 @default.
- W3199492808 hasConceptScore W3199492808C154945302 @default.
- W3199492808 hasConceptScore W3199492808C161664118 @default.
- W3199492808 hasConceptScore W3199492808C162324750 @default.
- W3199492808 hasConceptScore W3199492808C169258074 @default.
- W3199492808 hasConceptScore W3199492808C41008148 @default.
- W3199492808 hasConceptScore W3199492808C45804977 @default.
- W3199492808 hasConceptScore W3199492808C76155785 @default.
- W3199492808 hasConceptScore W3199492808C81669768 @default.
- W3199492808 hasLocation W31994928081 @default.
- W3199492808 hasOpenAccess W3199492808 @default.
- W3199492808 hasPrimaryLocation W31994928081 @default.
- W3199492808 hasRelatedWork W2979979539 @default.
- W3199492808 hasRelatedWork W3004897296 @default.
- W3199492808 hasRelatedWork W3127425528 @default.
- W3199492808 hasRelatedWork W3195168932 @default.
- W3199492808 hasRelatedWork W4205958290 @default.
- W3199492808 hasRelatedWork W4311106074 @default.
- W3199492808 hasRelatedWork W4313121989 @default.
- W3199492808 hasRelatedWork W4320483443 @default.
- W3199492808 hasRelatedWork W4321505170 @default.
- W3199492808 hasRelatedWork W4361795583 @default.
- W3199492808 isParatext "false" @default.
- W3199492808 isRetracted "false" @default.
- W3199492808 magId "3199492808" @default.
- W3199492808 workType "article" @default.