Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199509002> ?p ?o ?g. }
- W3199509002 endingPage "3714" @default.
- W3199509002 startingPage "3714" @default.
- W3199509002 abstract "A functional urban area (FUA) is a geographic entity that consists of a densely inhabited city and a less densely populated commuting zone, both highly integrated through labor markets. The delineation of FUAs is important for comparative urban studies and it is commonly performed using census data and data on commuting flows. However, at the national scale, censuses and commuting surveys are performed at low frequency, and, on the global scale, consistent and comparable data are difficult to obtain overall. In this paper, we suggest and test a novel approach based on artificial light at night (ALAN) satellite data to delineate FUAs. As ALAN is emitted by illumination of thoroughfare roads, frequented by commuters, and by buildings surrounding roads, ALAN data can be used, as we hypothesize, for the identification of FUAs. However, as individual FUAs differ by their ALAN emissions, different ALAN thresholds are needed to delineate different FUAs, even those in the same country. To determine such differential thresholds, we use a multi-step approach. First, we analyze the ALAN flux distribution and determine the most frequent ALAN value observed in each FUA. Next, we adjust this value for the FUA’s compactness, and run regressions, in which the estimated ALAN threshold is the dependent variable. In these models, we use several readily available, or easy-to-calculate, characteristics of FUA cores, such as latitude, proximity to the nearest major city, population density, and population density gradient, as predictors. At the next step, we use the estimated models to define optimal ALAN thresholds for individual FUAs, and then compare the boundaries of FUAs, estimated by modelling, with commuting-based delineations. To measure the degree of correspondence between the commuting-based and model-predicted FUAs’ boundaries, we use the Jaccard index, which compares the size of the intersection with the size of the union of each pair of delineations. We apply the proposed approach to two European countries—France and Spain—which host 82 and 72 FUAs, respectively. As our analysis shows, ALAN thresholds, estimated by modelling, fit FUAs’ commuting boundaries with an accuracy of up to 75–100%, being, on the average, higher for large and densely-populated FUAs, than for small, low-density ones. We validate the estimated models by applying them to another European country—Austria—which demonstrates the prediction accuracy of 47–57%, depending on the model type used." @default.
- W3199509002 created "2021-09-27" @default.
- W3199509002 creator A5036594925 @default.
- W3199509002 creator A5042146171 @default.
- W3199509002 creator A5061172285 @default.
- W3199509002 creator A5082767526 @default.
- W3199509002 date "2021-09-17" @default.
- W3199509002 modified "2023-10-05" @default.
- W3199509002 title "Delineating Functional Urban Areas Using a Multi-Step Analysis of Artificial Light-at-Night Data" @default.
- W3199509002 cites W1974614303 @default.
- W3199509002 cites W1978430187 @default.
- W3199509002 cites W1983564473 @default.
- W3199509002 cites W1987230720 @default.
- W3199509002 cites W1990200573 @default.
- W3199509002 cites W1991048925 @default.
- W3199509002 cites W1991871367 @default.
- W3199509002 cites W2001075407 @default.
- W3199509002 cites W2023693832 @default.
- W3199509002 cites W2025943354 @default.
- W3199509002 cites W2034932500 @default.
- W3199509002 cites W2039949490 @default.
- W3199509002 cites W2050571985 @default.
- W3199509002 cites W2061145869 @default.
- W3199509002 cites W2062415757 @default.
- W3199509002 cites W2069499652 @default.
- W3199509002 cites W2069624290 @default.
- W3199509002 cites W2077054013 @default.
- W3199509002 cites W2083319009 @default.
- W3199509002 cites W2091793895 @default.
- W3199509002 cites W2104153972 @default.
- W3199509002 cites W2139830545 @default.
- W3199509002 cites W2143022143 @default.
- W3199509002 cites W2151515721 @default.
- W3199509002 cites W2164074733 @default.
- W3199509002 cites W2328057635 @default.
- W3199509002 cites W2551950440 @default.
- W3199509002 cites W2590347033 @default.
- W3199509002 cites W2601271009 @default.
- W3199509002 cites W2649137640 @default.
- W3199509002 cites W2736936290 @default.
- W3199509002 cites W2741230155 @default.
- W3199509002 cites W2789245956 @default.
- W3199509002 cites W2791357706 @default.
- W3199509002 cites W2794022635 @default.
- W3199509002 cites W2799426468 @default.
- W3199509002 cites W2831656132 @default.
- W3199509002 cites W2892120151 @default.
- W3199509002 cites W2893317816 @default.
- W3199509002 cites W2900371128 @default.
- W3199509002 cites W2911964244 @default.
- W3199509002 cites W2964513694 @default.
- W3199509002 cites W2994593011 @default.
- W3199509002 cites W2996691396 @default.
- W3199509002 cites W2997323475 @default.
- W3199509002 cites W3041103588 @default.
- W3199509002 cites W4251849772 @default.
- W3199509002 cites W4376595762 @default.
- W3199509002 cites W3150806421 @default.
- W3199509002 doi "https://doi.org/10.3390/rs13183714" @default.
- W3199509002 hasPublicationYear "2021" @default.
- W3199509002 type Work @default.
- W3199509002 sameAs 3199509002 @default.
- W3199509002 citedByCount "5" @default.
- W3199509002 countsByYear W31995090022022 @default.
- W3199509002 countsByYear W31995090022023 @default.
- W3199509002 crossrefType "journal-article" @default.
- W3199509002 hasAuthorship W3199509002A5036594925 @default.
- W3199509002 hasAuthorship W3199509002A5042146171 @default.
- W3199509002 hasAuthorship W3199509002A5061172285 @default.
- W3199509002 hasAuthorship W3199509002A5082767526 @default.
- W3199509002 hasBestOaLocation W31995090021 @default.
- W3199509002 hasConcept C144024400 @default.
- W3199509002 hasConcept C149923435 @default.
- W3199509002 hasConcept C153294291 @default.
- W3199509002 hasConcept C205649164 @default.
- W3199509002 hasConcept C2778755073 @default.
- W3199509002 hasConcept C2908647359 @default.
- W3199509002 hasConcept C39432304 @default.
- W3199509002 hasConcept C41008148 @default.
- W3199509002 hasConcept C58640448 @default.
- W3199509002 hasConcept C62649853 @default.
- W3199509002 hasConceptScore W3199509002C144024400 @default.
- W3199509002 hasConceptScore W3199509002C149923435 @default.
- W3199509002 hasConceptScore W3199509002C153294291 @default.
- W3199509002 hasConceptScore W3199509002C205649164 @default.
- W3199509002 hasConceptScore W3199509002C2778755073 @default.
- W3199509002 hasConceptScore W3199509002C2908647359 @default.
- W3199509002 hasConceptScore W3199509002C39432304 @default.
- W3199509002 hasConceptScore W3199509002C41008148 @default.
- W3199509002 hasConceptScore W3199509002C58640448 @default.
- W3199509002 hasConceptScore W3199509002C62649853 @default.
- W3199509002 hasFunder F4320323278 @default.
- W3199509002 hasIssue "18" @default.
- W3199509002 hasLocation W31995090021 @default.
- W3199509002 hasLocation W31995090022 @default.
- W3199509002 hasOpenAccess W3199509002 @default.
- W3199509002 hasPrimaryLocation W31995090021 @default.
- W3199509002 hasRelatedWork W1974511032 @default.