Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199519068> ?p ?o ?g. }
- W3199519068 abstract "Abstract Over the past year, the world's attention has focused on combating COVID-19 disease, but the other threat waiting at the door—antimicrobial resistance should not be forgotten. Although making the diagnosis rapidly and accurately is crucial in preventing antibiotic resistance development, bacterial identification techniques include some challenging processes. To address this challenge, we proposed a deep neural network (DNN) that can discriminate antibiotic-resistant bacteria using surface-enhanced Raman spectroscopy (SERS). Stacked autoencoder (SAE)-based DNN was used for the rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) bacteria using a label-free SERS technique. The performance of the DNN was compared with traditional classifiers. Since the SERS technique provides high signal-to-noise ratio (SNR) data, some subtle differences were found between MRSA and MSSA in relative band intensities. SAE-based DNN can learn features from raw data and classify them with an accuracy of 97.66%. Moreover, the model discriminates bacteria with an area under curve (AUC) of 0.99. Compared to traditional classifiers, SAE-based DNN was found superior in accuracy and AUC values. The obtained results are also supported by statistical analysis. These results demonstrate that deep learning has great potential to characterize and detect antibiotic-resistant bacteria by using SERS spectral data." @default.
- W3199519068 created "2021-09-27" @default.
- W3199519068 creator A5008220670 @default.
- W3199519068 creator A5013342066 @default.
- W3199519068 creator A5060640245 @default.
- W3199519068 creator A5064412707 @default.
- W3199519068 creator A5076823347 @default.
- W3199519068 creator A5086430894 @default.
- W3199519068 creator A5088361672 @default.
- W3199519068 date "2021-09-16" @default.
- W3199519068 modified "2023-10-17" @default.
- W3199519068 title "Drug-resistant Staphylococcus aureus bacteria detection by combining surface-enhanced Raman spectroscopy (SERS) and deep learning techniques" @default.
- W3199519068 cites W1926375223 @default.
- W3199519068 cites W1965619014 @default.
- W3199519068 cites W1972318722 @default.
- W3199519068 cites W1984406092 @default.
- W3199519068 cites W1995443851 @default.
- W3199519068 cites W2013142297 @default.
- W3199519068 cites W2023658600 @default.
- W3199519068 cites W2030401917 @default.
- W3199519068 cites W2035812748 @default.
- W3199519068 cites W2041092109 @default.
- W3199519068 cites W2041338989 @default.
- W3199519068 cites W2045473619 @default.
- W3199519068 cites W2048637250 @default.
- W3199519068 cites W2056163357 @default.
- W3199519068 cites W2057428057 @default.
- W3199519068 cites W2061159029 @default.
- W3199519068 cites W2065262686 @default.
- W3199519068 cites W2081552889 @default.
- W3199519068 cites W2083039821 @default.
- W3199519068 cites W2087249002 @default.
- W3199519068 cites W2094938672 @default.
- W3199519068 cites W2148731096 @default.
- W3199519068 cites W2160099159 @default.
- W3199519068 cites W2261541998 @default.
- W3199519068 cites W2275084756 @default.
- W3199519068 cites W2283340597 @default.
- W3199519068 cites W2306919972 @default.
- W3199519068 cites W2340277620 @default.
- W3199519068 cites W2347049117 @default.
- W3199519068 cites W2597515552 @default.
- W3199519068 cites W2606370773 @default.
- W3199519068 cites W2609900267 @default.
- W3199519068 cites W2620308334 @default.
- W3199519068 cites W2744332922 @default.
- W3199519068 cites W2752532133 @default.
- W3199519068 cites W2765963384 @default.
- W3199519068 cites W2767469381 @default.
- W3199519068 cites W2808051157 @default.
- W3199519068 cites W2884689635 @default.
- W3199519068 cites W2891788346 @default.
- W3199519068 cites W2893083454 @default.
- W3199519068 cites W2905371068 @default.
- W3199519068 cites W2910805901 @default.
- W3199519068 cites W2919115771 @default.
- W3199519068 cites W2952266823 @default.
- W3199519068 cites W2955957302 @default.
- W3199519068 cites W2982482221 @default.
- W3199519068 cites W3015428699 @default.
- W3199519068 cites W3023024592 @default.
- W3199519068 cites W3091861253 @default.
- W3199519068 cites W3093633048 @default.
- W3199519068 cites W3120795911 @default.
- W3199519068 cites W3122230257 @default.
- W3199519068 doi "https://doi.org/10.1038/s41598-021-97882-4" @default.
- W3199519068 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8446005" @default.
- W3199519068 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34531449" @default.
- W3199519068 hasPublicationYear "2021" @default.
- W3199519068 type Work @default.
- W3199519068 sameAs 3199519068 @default.
- W3199519068 citedByCount "43" @default.
- W3199519068 countsByYear W31995190682021 @default.
- W3199519068 countsByYear W31995190682022 @default.
- W3199519068 countsByYear W31995190682023 @default.
- W3199519068 crossrefType "journal-article" @default.
- W3199519068 hasAuthorship W3199519068A5008220670 @default.
- W3199519068 hasAuthorship W3199519068A5013342066 @default.
- W3199519068 hasAuthorship W3199519068A5060640245 @default.
- W3199519068 hasAuthorship W3199519068A5064412707 @default.
- W3199519068 hasAuthorship W3199519068A5076823347 @default.
- W3199519068 hasAuthorship W3199519068A5086430894 @default.
- W3199519068 hasAuthorship W3199519068A5088361672 @default.
- W3199519068 hasBestOaLocation W31995190681 @default.
- W3199519068 hasConcept C101738243 @default.
- W3199519068 hasConcept C108583219 @default.
- W3199519068 hasConcept C119857082 @default.
- W3199519068 hasConcept C120665830 @default.
- W3199519068 hasConcept C121332964 @default.
- W3199519068 hasConcept C153180895 @default.
- W3199519068 hasConcept C154945302 @default.
- W3199519068 hasConcept C169573571 @default.
- W3199519068 hasConcept C2777790068 @default.
- W3199519068 hasConcept C2779489039 @default.
- W3199519068 hasConcept C40003534 @default.
- W3199519068 hasConcept C41008148 @default.
- W3199519068 hasConcept C501593827 @default.
- W3199519068 hasConcept C50644808 @default.
- W3199519068 hasConcept C523546767 @default.
- W3199519068 hasConcept C54355233 @default.