Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199536175> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3199536175 endingPage "319" @default.
- W3199536175 startingPage "304" @default.
- W3199536175 abstract "The current spreading of the SARS-CoV-2 pandemic had put all the scientific community in alert. Even in the presence of different vaccines, the active virus still represents a global challenge. Due to its rapid spreading and uncertain nature, having the ability to forecast its dynamics becomes a necessary tool in the development of fast and efficient health policies. This study implements a temporal convolutional neural network (TCN), trained with the open covid-19 data set sourced by the Health Ministry of Peru (MINSA) on the Peruvian coast. In order to obtain a robust model, the data was divided into validation and training sets, without overlapping. Using the validation set the model architecture and hyper-parameters were found with Bayesian optimization. Using the optimal configuration the TCN was trained with a test and forecasting window of 15 days ahead. Predictions on available data were made from March 06, 2020 until April 13, 2021, whereas forecasting from April 14 to April 29, 2021. In order to account for uncertainty, the TCN estimated the 5%, 50% and 95% prediction quantiles. Evaluation was made using the MAE, MAD, MSLE, RMSLE and PICP metrics. Results suggested some variations in the data distribution. Test results shown an improvement of 24.241, 0.704 and 0.422 for the MAD, MSLE and RMSLE metrics respectively. Finally, the prediction interval analysis shown an average of 97.886% and 97.778% obtained by the model in the train and test partitions." @default.
- W3199536175 created "2021-09-27" @default.
- W3199536175 creator A5020292245 @default.
- W3199536175 creator A5033305806 @default.
- W3199536175 creator A5037009064 @default.
- W3199536175 creator A5037864523 @default.
- W3199536175 creator A5068478324 @default.
- W3199536175 date "2021-01-01" @default.
- W3199536175 modified "2023-10-01" @default.
- W3199536175 title "A Deep Learning Approach to Forecast SARS-CoV-2 on the Peruvian Coast" @default.
- W3199536175 cites W2064675550 @default.
- W3199536175 cites W2194775991 @default.
- W3199536175 cites W2964054038 @default.
- W3199536175 cites W3008443627 @default.
- W3199536175 cites W3013649595 @default.
- W3199536175 cites W3015886046 @default.
- W3199536175 cites W3022787740 @default.
- W3199536175 cites W3033560790 @default.
- W3199536175 cites W3042316884 @default.
- W3199536175 cites W3046776766 @default.
- W3199536175 cites W3086570102 @default.
- W3199536175 cites W3107979244 @default.
- W3199536175 cites W3110804228 @default.
- W3199536175 cites W3152530051 @default.
- W3199536175 doi "https://doi.org/10.1007/978-3-030-86970-0_22" @default.
- W3199536175 hasPublicationYear "2021" @default.
- W3199536175 type Work @default.
- W3199536175 sameAs 3199536175 @default.
- W3199536175 citedByCount "0" @default.
- W3199536175 crossrefType "book-chapter" @default.
- W3199536175 hasAuthorship W3199536175A5020292245 @default.
- W3199536175 hasAuthorship W3199536175A5033305806 @default.
- W3199536175 hasAuthorship W3199536175A5037009064 @default.
- W3199536175 hasAuthorship W3199536175A5037864523 @default.
- W3199536175 hasAuthorship W3199536175A5068478324 @default.
- W3199536175 hasConcept C105795698 @default.
- W3199536175 hasConcept C108583219 @default.
- W3199536175 hasConcept C118671147 @default.
- W3199536175 hasConcept C119857082 @default.
- W3199536175 hasConcept C124101348 @default.
- W3199536175 hasConcept C138885662 @default.
- W3199536175 hasConcept C142724271 @default.
- W3199536175 hasConcept C154945302 @default.
- W3199536175 hasConcept C169903167 @default.
- W3199536175 hasConcept C27206212 @default.
- W3199536175 hasConcept C2779134260 @default.
- W3199536175 hasConcept C3008058167 @default.
- W3199536175 hasConcept C33923547 @default.
- W3199536175 hasConcept C41008148 @default.
- W3199536175 hasConcept C42475967 @default.
- W3199536175 hasConcept C50644808 @default.
- W3199536175 hasConcept C521751864 @default.
- W3199536175 hasConcept C524204448 @default.
- W3199536175 hasConcept C58489278 @default.
- W3199536175 hasConcept C71924100 @default.
- W3199536175 hasConcept C81363708 @default.
- W3199536175 hasConceptScore W3199536175C105795698 @default.
- W3199536175 hasConceptScore W3199536175C108583219 @default.
- W3199536175 hasConceptScore W3199536175C118671147 @default.
- W3199536175 hasConceptScore W3199536175C119857082 @default.
- W3199536175 hasConceptScore W3199536175C124101348 @default.
- W3199536175 hasConceptScore W3199536175C138885662 @default.
- W3199536175 hasConceptScore W3199536175C142724271 @default.
- W3199536175 hasConceptScore W3199536175C154945302 @default.
- W3199536175 hasConceptScore W3199536175C169903167 @default.
- W3199536175 hasConceptScore W3199536175C27206212 @default.
- W3199536175 hasConceptScore W3199536175C2779134260 @default.
- W3199536175 hasConceptScore W3199536175C3008058167 @default.
- W3199536175 hasConceptScore W3199536175C33923547 @default.
- W3199536175 hasConceptScore W3199536175C41008148 @default.
- W3199536175 hasConceptScore W3199536175C42475967 @default.
- W3199536175 hasConceptScore W3199536175C50644808 @default.
- W3199536175 hasConceptScore W3199536175C521751864 @default.
- W3199536175 hasConceptScore W3199536175C524204448 @default.
- W3199536175 hasConceptScore W3199536175C58489278 @default.
- W3199536175 hasConceptScore W3199536175C71924100 @default.
- W3199536175 hasConceptScore W3199536175C81363708 @default.
- W3199536175 hasLocation W31995361751 @default.
- W3199536175 hasOpenAccess W3199536175 @default.
- W3199536175 hasPrimaryLocation W31995361751 @default.
- W3199536175 hasRelatedWork W2731899572 @default.
- W3199536175 hasRelatedWork W2997155179 @default.
- W3199536175 hasRelatedWork W2999805992 @default.
- W3199536175 hasRelatedWork W3099765033 @default.
- W3199536175 hasRelatedWork W3116150086 @default.
- W3199536175 hasRelatedWork W3133861977 @default.
- W3199536175 hasRelatedWork W4200173597 @default.
- W3199536175 hasRelatedWork W4312417841 @default.
- W3199536175 hasRelatedWork W4321369474 @default.
- W3199536175 hasRelatedWork W4366351422 @default.
- W3199536175 isParatext "false" @default.
- W3199536175 isRetracted "false" @default.
- W3199536175 magId "3199536175" @default.
- W3199536175 workType "book-chapter" @default.