Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199545630> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W3199545630 endingPage "104" @default.
- W3199545630 startingPage "37" @default.
- W3199545630 abstract "In recent times, there has been rapid growth in data generated from autonomous sources. The existing data processing techniques are not suitable to deal with these large volumes of complex data that can be structured, semi-structured or unstructured. This large data is referred to as Big data because of its main characteristics: volume, variety velocity, value and veracity. Extensive research on Big data is ongoing, and the primary focus of this research is on processing massive amounts of data effectively and efficiently. However, researchers are paying little attention on how to store and analyze the large volumes of data to get useful insights from it. In this chapter, the authors examine existing Big data processing frameworks like MapReduce, Apache Spark, Storm and Flink. In this chapter, the architectures of MapReduce, iterative MapReduce frameworks and components of Apache Spark are discussed in detail. Most of the widely used classical machine learning techniques are implemented using these Big data frameworks in the form of Apache Mahout and Spark MLlib libraries and these need to be enhanced to support all existing machine learning techniques like formal concept analysis (FCA) and neural embedding. In this chapter, authors have taken FCA as an application and provided scalable FCA algorithms using the Big data processing frameworks like MapReduce and Spark. Streaming data processing frameworks like Apache Flink and Apache Storm is also examined. Authors also discuss about the storage architectures like Hadoop Distributed File System (HDFS), Dynamo and Amazon S3 in detail while processing large Big data applications. The survey concludes with a proposal for best practices related to the studied architectures and frameworks." @default.
- W3199545630 created "2021-09-27" @default.
- W3199545630 creator A5085408978 @default.
- W3199545630 creator A5087927873 @default.
- W3199545630 date "2021-07-07" @default.
- W3199545630 modified "2023-10-02" @default.
- W3199545630 title "Big data processing frameworks and architectures: a survey" @default.
- W3199545630 doi "https://doi.org/10.1049/pbpc037f_ch2" @default.
- W3199545630 hasPublicationYear "2021" @default.
- W3199545630 type Work @default.
- W3199545630 sameAs 3199545630 @default.
- W3199545630 citedByCount "1" @default.
- W3199545630 countsByYear W31995456302023 @default.
- W3199545630 crossrefType "book-chapter" @default.
- W3199545630 hasAuthorship W3199545630A5085408978 @default.
- W3199545630 hasAuthorship W3199545630A5087927873 @default.
- W3199545630 hasConcept C124101348 @default.
- W3199545630 hasConcept C138827492 @default.
- W3199545630 hasConcept C199360897 @default.
- W3199545630 hasConcept C2522767166 @default.
- W3199545630 hasConcept C2781215313 @default.
- W3199545630 hasConcept C41008148 @default.
- W3199545630 hasConcept C48044578 @default.
- W3199545630 hasConcept C75684735 @default.
- W3199545630 hasConcept C77088390 @default.
- W3199545630 hasConceptScore W3199545630C124101348 @default.
- W3199545630 hasConceptScore W3199545630C138827492 @default.
- W3199545630 hasConceptScore W3199545630C199360897 @default.
- W3199545630 hasConceptScore W3199545630C2522767166 @default.
- W3199545630 hasConceptScore W3199545630C2781215313 @default.
- W3199545630 hasConceptScore W3199545630C41008148 @default.
- W3199545630 hasConceptScore W3199545630C48044578 @default.
- W3199545630 hasConceptScore W3199545630C75684735 @default.
- W3199545630 hasConceptScore W3199545630C77088390 @default.
- W3199545630 hasLocation W31995456301 @default.
- W3199545630 hasOpenAccess W3199545630 @default.
- W3199545630 hasPrimaryLocation W31995456301 @default.
- W3199545630 hasRelatedWork W2545366524 @default.
- W3199545630 hasRelatedWork W2782700877 @default.
- W3199545630 hasRelatedWork W2803683285 @default.
- W3199545630 hasRelatedWork W2889616422 @default.
- W3199545630 hasRelatedWork W2891888092 @default.
- W3199545630 hasRelatedWork W2900588685 @default.
- W3199545630 hasRelatedWork W3211874991 @default.
- W3199545630 hasRelatedWork W3217778767 @default.
- W3199545630 hasRelatedWork W4319005227 @default.
- W3199545630 hasRelatedWork W4381617221 @default.
- W3199545630 isParatext "false" @default.
- W3199545630 isRetracted "false" @default.
- W3199545630 magId "3199545630" @default.
- W3199545630 workType "book-chapter" @default.