Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199574295> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3199574295 abstract "Wisdom agriculture is a significant stage goal in the process of agricultural modernization development. Wisdom agriculture promotes the integration of agricultural informatization and intelligence. In recent years, the new models of intelligent agriculture based on artificial intelligence has developed rapidly. In this paper, 3D laser point cloud is used as research data to carry out in-depth research in the field of agriculture based on deep learning technology and point cloud. In this study, the deep learning model Pointnet ++ was used to segment the rapeseed point cloud data in the field: (1) The color enhancement algorithm of HSV color space was used to achieve color threshold segmentation of rapeseed crop point cloud data in complex field environment, and Statistical Outlier Filter and Super-Voxel Clustering were used to segment group rapeseed point cloud respectively. Finally, two groups of pure rapeseed point cloud data were obtained. (2) In this research, six original rapeseed point cloud data sets were used as datasets to train and test the segmentation performance of Pointnet++ (Multi-scale Grouping, MSG) deep learning model for rapeseed point cloud. Intersection over Union(IoU) was taken as the evaluation index of point cloud segmentation accuracy. The IoU of rape point cloud data processed by the three segmentation methods were 0.7748, 0.8019 and 0.8260, respectively. The results show that the segmentation performance of the deep learning model based on Pointnet ++ (MSG) is higher than that of the conventional point cloud segmentation algorithm. Compared with the conventional point cloud segmentation models, the point cloud segmentation based on deep learning framework shows better performance. The construction of a deep learning framework for crop point cloud segmentation and classification in the field requires the corresponding feature extraction processing based on the geometric structure or attributes of specific crops. In the context of the rapid development of agricultural big data, the deep learning framework in the field of agriculture is robust to deal with complex field environment, and the application of deep learning to agricultural research has a good prospect." @default.
- W3199574295 created "2021-09-27" @default.
- W3199574295 creator A5029107463 @default.
- W3199574295 creator A5035817070 @default.
- W3199574295 creator A5070132746 @default.
- W3199574295 creator A5072137495 @default.
- W3199574295 date "2021-07-26" @default.
- W3199574295 modified "2023-09-26" @default.
- W3199574295 title "Sementing the Field of Rapeseed from 3D Laser Point Cloud Using Deep Learning" @default.
- W3199574295 cites W2560609797 @default.
- W3199574295 cites W2606202972 @default.
- W3199574295 cites W2625219738 @default.
- W3199574295 cites W2891649842 @default.
- W3199574295 cites W2905402225 @default.
- W3199574295 cites W3120907553 @default.
- W3199574295 doi "https://doi.org/10.1109/agro-geoinformatics50104.2021.9530316" @default.
- W3199574295 hasPublicationYear "2021" @default.
- W3199574295 type Work @default.
- W3199574295 sameAs 3199574295 @default.
- W3199574295 citedByCount "0" @default.
- W3199574295 crossrefType "proceedings-article" @default.
- W3199574295 hasAuthorship W3199574295A5029107463 @default.
- W3199574295 hasAuthorship W3199574295A5035817070 @default.
- W3199574295 hasAuthorship W3199574295A5070132746 @default.
- W3199574295 hasAuthorship W3199574295A5072137495 @default.
- W3199574295 hasConcept C108583219 @default.
- W3199574295 hasConcept C111919701 @default.
- W3199574295 hasConcept C124504099 @default.
- W3199574295 hasConcept C131979681 @default.
- W3199574295 hasConcept C154945302 @default.
- W3199574295 hasConcept C205649164 @default.
- W3199574295 hasConcept C31972630 @default.
- W3199574295 hasConcept C41008148 @default.
- W3199574295 hasConcept C62649853 @default.
- W3199574295 hasConcept C79974875 @default.
- W3199574295 hasConcept C89600930 @default.
- W3199574295 hasConceptScore W3199574295C108583219 @default.
- W3199574295 hasConceptScore W3199574295C111919701 @default.
- W3199574295 hasConceptScore W3199574295C124504099 @default.
- W3199574295 hasConceptScore W3199574295C131979681 @default.
- W3199574295 hasConceptScore W3199574295C154945302 @default.
- W3199574295 hasConceptScore W3199574295C205649164 @default.
- W3199574295 hasConceptScore W3199574295C31972630 @default.
- W3199574295 hasConceptScore W3199574295C41008148 @default.
- W3199574295 hasConceptScore W3199574295C62649853 @default.
- W3199574295 hasConceptScore W3199574295C79974875 @default.
- W3199574295 hasConceptScore W3199574295C89600930 @default.
- W3199574295 hasFunder F4320321001 @default.
- W3199574295 hasFunder F4320322186 @default.
- W3199574295 hasFunder F4320335787 @default.
- W3199574295 hasLocation W31995742951 @default.
- W3199574295 hasOpenAccess W3199574295 @default.
- W3199574295 hasPrimaryLocation W31995742951 @default.
- W3199574295 hasRelatedWork W1631910785 @default.
- W3199574295 hasRelatedWork W1669643531 @default.
- W3199574295 hasRelatedWork W2110230079 @default.
- W3199574295 hasRelatedWork W2117933325 @default.
- W3199574295 hasRelatedWork W2122581818 @default.
- W3199574295 hasRelatedWork W2159066190 @default.
- W3199574295 hasRelatedWork W2739874619 @default.
- W3199574295 hasRelatedWork W2790662084 @default.
- W3199574295 hasRelatedWork W2948658236 @default.
- W3199574295 hasRelatedWork W3169001153 @default.
- W3199574295 isParatext "false" @default.
- W3199574295 isRetracted "false" @default.
- W3199574295 magId "3199574295" @default.
- W3199574295 workType "article" @default.