Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199576957> ?p ?o ?g. }
- W3199576957 endingPage "322" @default.
- W3199576957 startingPage "294" @default.
- W3199576957 abstract "Each year, accidents involving ships result in significant loss of life, environmental pollution and economic losses. The promotion of navigation safety through risk reduction requires methods to assess the spatial distribution of the relative likelihood of occurrence. Yet, such methods necessitate the integration of large volumes of heterogenous datasets which are not well suited to traditional data structures. This paper proposes the use of the Discrete Global Grid System (DGGS) as an efficient and advantageous structure to integrate vessel traffic, metocean, bathymetric, infrastructure and other relevant maritime datasets to predict the occurrence of ship groundings. Massive and heterogenous datasets are well suited for machine learning algorithms and this paper develops a spatial maritime risk model based on a DGGS utilising such an approach. A Random Forest algorithm is developed to predict the frequency and spatial distribution of groundings while achieving an R2 of 0.55 and a mean squared error of 0.002. The resulting risk maps are useful for decision-makers in planning the allocation of mitigation measures, targeted to regions with the highest risk. Further work is identified to expand the applications and insights which could be achieved through establishing a DGGS as a global maritime spatial data structure." @default.
- W3199576957 created "2021-09-27" @default.
- W3199576957 creator A5069698176 @default.
- W3199576957 creator A5079300742 @default.
- W3199576957 creator A5087772122 @default.
- W3199576957 date "2021-09-13" @default.
- W3199576957 modified "2023-10-16" @default.
- W3199576957 title "Intelligent geospatial maritime risk analytics using the Discrete Global Grid System" @default.
- W3199576957 cites W2032910161 @default.
- W3199576957 cites W2062180156 @default.
- W3199576957 cites W2069827680 @default.
- W3199576957 cites W2070018530 @default.
- W3199576957 cites W2075236191 @default.
- W3199576957 cites W2137398591 @default.
- W3199576957 cites W2140287944 @default.
- W3199576957 cites W2154327689 @default.
- W3199576957 cites W2166213048 @default.
- W3199576957 cites W2297440034 @default.
- W3199576957 cites W2363164930 @default.
- W3199576957 cites W2402676090 @default.
- W3199576957 cites W2504593196 @default.
- W3199576957 cites W2558443445 @default.
- W3199576957 cites W2742588890 @default.
- W3199576957 cites W2767521976 @default.
- W3199576957 cites W2783777795 @default.
- W3199576957 cites W2789228510 @default.
- W3199576957 cites W2800077253 @default.
- W3199576957 cites W2801726981 @default.
- W3199576957 cites W2891261513 @default.
- W3199576957 cites W2895789655 @default.
- W3199576957 cites W2897603057 @default.
- W3199576957 cites W2899434936 @default.
- W3199576957 cites W2911964244 @default.
- W3199576957 cites W2913909500 @default.
- W3199576957 cites W2918646765 @default.
- W3199576957 cites W2921744946 @default.
- W3199576957 cites W2933452654 @default.
- W3199576957 cites W2946251827 @default.
- W3199576957 cites W2962829074 @default.
- W3199576957 cites W2964482263 @default.
- W3199576957 cites W2969759557 @default.
- W3199576957 cites W2971062738 @default.
- W3199576957 cites W2979835828 @default.
- W3199576957 cites W2980110391 @default.
- W3199576957 cites W2981915020 @default.
- W3199576957 cites W2991113112 @default.
- W3199576957 cites W2995005091 @default.
- W3199576957 cites W2999110778 @default.
- W3199576957 cites W3010204140 @default.
- W3199576957 cites W3013296076 @default.
- W3199576957 cites W3028399946 @default.
- W3199576957 cites W3043228368 @default.
- W3199576957 cites W3096486670 @default.
- W3199576957 cites W3099431668 @default.
- W3199576957 cites W3100199031 @default.
- W3199576957 cites W3122473240 @default.
- W3199576957 cites W3162480343 @default.
- W3199576957 cites W4233452110 @default.
- W3199576957 doi "https://doi.org/10.1080/20964471.2021.1965370" @default.
- W3199576957 hasPublicationYear "2021" @default.
- W3199576957 type Work @default.
- W3199576957 sameAs 3199576957 @default.
- W3199576957 citedByCount "10" @default.
- W3199576957 countsByYear W31995769572022 @default.
- W3199576957 countsByYear W31995769572023 @default.
- W3199576957 crossrefType "journal-article" @default.
- W3199576957 hasAuthorship W3199576957A5069698176 @default.
- W3199576957 hasAuthorship W3199576957A5079300742 @default.
- W3199576957 hasAuthorship W3199576957A5087772122 @default.
- W3199576957 hasBestOaLocation W31995769571 @default.
- W3199576957 hasConcept C124101348 @default.
- W3199576957 hasConcept C13280743 @default.
- W3199576957 hasConcept C159620131 @default.
- W3199576957 hasConcept C187691185 @default.
- W3199576957 hasConcept C205649164 @default.
- W3199576957 hasConcept C41008148 @default.
- W3199576957 hasConcept C58640448 @default.
- W3199576957 hasConcept C62649853 @default.
- W3199576957 hasConcept C79158427 @default.
- W3199576957 hasConcept C9770341 @default.
- W3199576957 hasConceptScore W3199576957C124101348 @default.
- W3199576957 hasConceptScore W3199576957C13280743 @default.
- W3199576957 hasConceptScore W3199576957C159620131 @default.
- W3199576957 hasConceptScore W3199576957C187691185 @default.
- W3199576957 hasConceptScore W3199576957C205649164 @default.
- W3199576957 hasConceptScore W3199576957C41008148 @default.
- W3199576957 hasConceptScore W3199576957C58640448 @default.
- W3199576957 hasConceptScore W3199576957C62649853 @default.
- W3199576957 hasConceptScore W3199576957C79158427 @default.
- W3199576957 hasConceptScore W3199576957C9770341 @default.
- W3199576957 hasFunder F4320335254 @default.
- W3199576957 hasIssue "3" @default.
- W3199576957 hasLocation W31995769571 @default.
- W3199576957 hasLocation W31995769572 @default.
- W3199576957 hasLocation W31995769573 @default.
- W3199576957 hasLocation W31995769574 @default.
- W3199576957 hasOpenAccess W3199576957 @default.
- W3199576957 hasPrimaryLocation W31995769571 @default.