Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199587816> ?p ?o ?g. }
- W3199587816 endingPage "6274" @default.
- W3199587816 startingPage "6274" @default.
- W3199587816 abstract "Error-related potentials (ErrPs) have been proposed as a means for improving brain–computer interface (BCI) performance by either correcting an incorrect action performed by the BCI or label data for continuous adaptation of the BCI to improve the performance. The latter approach could be relevant within stroke rehabilitation where BCI calibration time could be minimized by using a generalized classifier that is continuously being individualized throughout the rehabilitation session. This may be achieved if data are correctly labelled. Therefore, the aims of this study were: (1) classify single-trial ErrPs produced by individuals with stroke, (2) investigate test–retest reliability, and (3) compare different classifier calibration schemes with different classification methods (artificial neural network, ANN, and linear discriminant analysis, LDA) with waveform features as input for meaningful physiological interpretability. Twenty-five individuals with stroke operated a sham BCI on two separate days where they attempted to perform a movement after which they received feedback (error/correct) while continuous EEG was recorded. The EEG was divided into epochs: ErrPs and NonErrPs. The epochs were classified with a multi-layer perceptron ANN based on temporal features or the entire epoch. Additionally, the features were classified with shrinkage LDA. The features were waveforms of the ErrPs and NonErrPs from the sensorimotor cortex to improve the explainability and interpretation of the output of the classifiers. Three calibration schemes were tested: within-day, between-day, and across-participant. Using within-day calibration, 90% of the data were correctly classified with the entire epoch as input to the ANN; it decreased to 86% and 69% when using temporal features as input to ANN and LDA, respectively. There was poor test–retest reliability between the two days, and the other calibration schemes led to accuracies in the range of 63–72% with LDA performing the best. There was no association between the individuals’ impairment level and classification accuracies. The results show that ErrPs can be classified in individuals with stroke, but that user- and session-specific calibration is needed for optimal ErrP decoding with this approach. The use of ErrP/NonErrP waveform features makes it possible to have a physiological meaningful interpretation of the output of the classifiers. The results may have implications for labelling data continuously in BCIs for stroke rehabilitation and thus potentially improve the BCI performance." @default.
- W3199587816 created "2021-09-27" @default.
- W3199587816 creator A5043672014 @default.
- W3199587816 creator A5064634213 @default.
- W3199587816 creator A5075820834 @default.
- W3199587816 creator A5089087477 @default.
- W3199587816 date "2021-09-18" @default.
- W3199587816 modified "2023-10-03" @default.
- W3199587816 title "Detection of Error-Related Potentials in Stroke Patients from EEG Using an Artificial Neural Network" @default.
- W3199587816 cites W1598751391 @default.
- W3199587816 cites W1863903780 @default.
- W3199587816 cites W1970810079 @default.
- W3199587816 cites W1971411031 @default.
- W3199587816 cites W1975810683 @default.
- W3199587816 cites W1983395577 @default.
- W3199587816 cites W1991584086 @default.
- W3199587816 cites W1993664966 @default.
- W3199587816 cites W2003004992 @default.
- W3199587816 cites W2009414417 @default.
- W3199587816 cites W2018364998 @default.
- W3199587816 cites W2022607432 @default.
- W3199587816 cites W2034172541 @default.
- W3199587816 cites W2062870838 @default.
- W3199587816 cites W2067025621 @default.
- W3199587816 cites W2081288663 @default.
- W3199587816 cites W2097886793 @default.
- W3199587816 cites W2102514937 @default.
- W3199587816 cites W2106006415 @default.
- W3199587816 cites W2109578915 @default.
- W3199587816 cites W2114249077 @default.
- W3199587816 cites W2123796965 @default.
- W3199587816 cites W2131251829 @default.
- W3199587816 cites W2137884548 @default.
- W3199587816 cites W2139182168 @default.
- W3199587816 cites W2141840333 @default.
- W3199587816 cites W2152233474 @default.
- W3199587816 cites W2152693668 @default.
- W3199587816 cites W2154037495 @default.
- W3199587816 cites W2179967428 @default.
- W3199587816 cites W2254165268 @default.
- W3199587816 cites W2288444328 @default.
- W3199587816 cites W2610581658 @default.
- W3199587816 cites W2743693945 @default.
- W3199587816 cites W2757114988 @default.
- W3199587816 cites W2761921352 @default.
- W3199587816 cites W2770678877 @default.
- W3199587816 cites W2780011893 @default.
- W3199587816 cites W2801650400 @default.
- W3199587816 cites W2805507770 @default.
- W3199587816 cites W2886028207 @default.
- W3199587816 cites W2900414511 @default.
- W3199587816 cites W2944222125 @default.
- W3199587816 cites W2963272727 @default.
- W3199587816 cites W2975049979 @default.
- W3199587816 cites W2978680540 @default.
- W3199587816 cites W2987554102 @default.
- W3199587816 cites W2996173099 @default.
- W3199587816 cites W2999591969 @default.
- W3199587816 cites W3028506176 @default.
- W3199587816 cites W3034471002 @default.
- W3199587816 cites W3046817909 @default.
- W3199587816 cites W3082381283 @default.
- W3199587816 cites W3112653881 @default.
- W3199587816 cites W3127392072 @default.
- W3199587816 cites W3708925 @default.
- W3199587816 cites W4249994402 @default.
- W3199587816 doi "https://doi.org/10.3390/s21186274" @default.
- W3199587816 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8472485" @default.
- W3199587816 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34577481" @default.
- W3199587816 hasPublicationYear "2021" @default.
- W3199587816 type Work @default.
- W3199587816 sameAs 3199587816 @default.
- W3199587816 citedByCount "6" @default.
- W3199587816 countsByYear W31995878162022 @default.
- W3199587816 countsByYear W31995878162023 @default.
- W3199587816 crossrefType "journal-article" @default.
- W3199587816 hasAuthorship W3199587816A5043672014 @default.
- W3199587816 hasAuthorship W3199587816A5064634213 @default.
- W3199587816 hasAuthorship W3199587816A5075820834 @default.
- W3199587816 hasAuthorship W3199587816A5089087477 @default.
- W3199587816 hasBestOaLocation W31995878161 @default.
- W3199587816 hasConcept C118552586 @default.
- W3199587816 hasConcept C153180895 @default.
- W3199587816 hasConcept C154945302 @default.
- W3199587816 hasConcept C15744967 @default.
- W3199587816 hasConcept C173201364 @default.
- W3199587816 hasConcept C179717631 @default.
- W3199587816 hasConcept C2781067378 @default.
- W3199587816 hasConcept C41008148 @default.
- W3199587816 hasConcept C50644808 @default.
- W3199587816 hasConcept C522805319 @default.
- W3199587816 hasConcept C60908668 @default.
- W3199587816 hasConcept C69738355 @default.
- W3199587816 hasConceptScore W3199587816C118552586 @default.
- W3199587816 hasConceptScore W3199587816C153180895 @default.
- W3199587816 hasConceptScore W3199587816C154945302 @default.
- W3199587816 hasConceptScore W3199587816C15744967 @default.
- W3199587816 hasConceptScore W3199587816C173201364 @default.