Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199591023> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3199591023 abstract "Accurate estimation of battery internal model parameters and consequently state of charge (SOC) prediction is crucial in any battery powered systems. Especially, it is the fundamental need in Electric Vehicles (EVs), smart grids, and energy storage systems. The accuracy in Identification of model parameters will affect the Battery Management System (BMS), battery safety, characteristics, and performance [1]. To estimate the parameters accurately and easily, we require effective, simple, and robust parameters estimation algorithms. In this abstract, we have proposed a new method for parameters estimation using the modified Grey Wolf Optimization (GWO) for Lithium-ion Batteries (LIBs) in EV applications. Second order RC equivalent circuit Model is considered for NMC battery. The parameters estimation and non-linear relation of OCV-SOC are obtained from the experimental data as shown in Fig. 1. This proposed method produces fast, robust, and efficient identification of parameters.GWO is a revolutionary meta-heuristic optimization method. Meta heuristic optimization approaches are in high demand for tackling optimization difficulties due to its simplicity, flexibility, derivation-free mechanism, and avoidance of local optima [2-4]. GWO primary assumption is to imitate grey wolves cooperative hunting behaviour in the wild. GWO stands apart from the competition in terms of model structure. For the optimization task, it performs well [4].At the moment, identification of battery parameters is a challenging task because of the factor that the battery is a complex non-linear device, and parameters are affected by several factors. The development of a battery model is essential for effective utilization of battery energy, identification of operating limitations, developing Fast charging algorithms, and safe charging/discharging. An accurate battery model is essential in the design of efficient BMS. In any battery powered system, the battery modelling plays a key role since it accurately reflects the chemical reactions that have occurred inside the battery. We can accurately predict the battery characterization/ estimation of battery parameters [5]. Estimation of battery parameters and states, are pivotal for superior management and control of battery usable capacity, for safe operation and to prolong the useful life of batteries. Batteries have many known parameters like current, voltage, temperature which can be directly accessed from the experiment or from the sensors. Battery states (SOC, SOH) are unknown parameters that can’t be extracted directly from the experiments. These states are estimated from the known parameters. Accurate estimation of battery parameters and SOC is a demanding task in real time applications because batteries are nonlinear, time-dependent electrochemical devices, and depend on several influential internal and external conditions [6]. So robust, efficient, and low complexity battery models are required to connect these unknown parameters with the known parameters to find the SOC, SOH, and to effectively use and manage the LIBs [7].The equivalent circuit model (ECM) is the most widely used battery modelling technique in EVs to model the LIBs. It is an easy and simple model that uses the electrical circuit components to describe the chemical reactions that occur inside the battery components such as resistors, capacitors, inductors, voltage source, etc. [8]. In this model, we can accurately reflect the chemical reactions like charge transfer reactions, diffusion process and each chemical reaction is represented by a particular electrical component [7].This model avoids the complexity in determination of parameters and is suitable for real-time applications as it provides moderate accuracy and less complexity. ECM gives a flexible trade-off between accuracy and complexity and easier to Identify the battery parameters like voltage, current, and the temperature. In recent times, second-order (2RC) ECM is a widely used model as it gives the best results when compared with the other ECM models in terms of complexity and accuracy. Research is going on in this field to update the parameters based on frequency [9]." @default.
- W3199591023 created "2021-09-27" @default.
- W3199591023 creator A5009468551 @default.
- W3199591023 creator A5026741374 @default.
- W3199591023 creator A5034742532 @default.
- W3199591023 creator A5073518483 @default.
- W3199591023 creator A5088436123 @default.
- W3199591023 date "2021-09-15" @default.
- W3199591023 modified "2023-09-24" @default.
- W3199591023 title "Lithium-ion Battery Model Parameters Estimation Using Modified Grey Wolf Optimization for E-mobility Applications" @default.
- W3199591023 hasPublicationYear "2021" @default.
- W3199591023 type Work @default.
- W3199591023 sameAs 3199591023 @default.
- W3199591023 citedByCount "0" @default.
- W3199591023 crossrefType "journal-article" @default.
- W3199591023 hasAuthorship W3199591023A5009468551 @default.
- W3199591023 hasAuthorship W3199591023A5026741374 @default.
- W3199591023 hasAuthorship W3199591023A5034742532 @default.
- W3199591023 hasAuthorship W3199591023A5073518483 @default.
- W3199591023 hasAuthorship W3199591023A5088436123 @default.
- W3199591023 hasConcept C11413529 @default.
- W3199591023 hasConcept C115903868 @default.
- W3199591023 hasConcept C116834253 @default.
- W3199591023 hasConcept C119247159 @default.
- W3199591023 hasConcept C121332964 @default.
- W3199591023 hasConcept C126255220 @default.
- W3199591023 hasConcept C127413603 @default.
- W3199591023 hasConcept C137836250 @default.
- W3199591023 hasConcept C154945302 @default.
- W3199591023 hasConcept C163258240 @default.
- W3199591023 hasConcept C173801870 @default.
- W3199591023 hasConcept C2775924081 @default.
- W3199591023 hasConcept C2776582896 @default.
- W3199591023 hasConcept C33923547 @default.
- W3199591023 hasConcept C41008148 @default.
- W3199591023 hasConcept C47446073 @default.
- W3199591023 hasConcept C555008776 @default.
- W3199591023 hasConcept C59822182 @default.
- W3199591023 hasConcept C62520636 @default.
- W3199591023 hasConcept C67186912 @default.
- W3199591023 hasConcept C86803240 @default.
- W3199591023 hasConceptScore W3199591023C11413529 @default.
- W3199591023 hasConceptScore W3199591023C115903868 @default.
- W3199591023 hasConceptScore W3199591023C116834253 @default.
- W3199591023 hasConceptScore W3199591023C119247159 @default.
- W3199591023 hasConceptScore W3199591023C121332964 @default.
- W3199591023 hasConceptScore W3199591023C126255220 @default.
- W3199591023 hasConceptScore W3199591023C127413603 @default.
- W3199591023 hasConceptScore W3199591023C137836250 @default.
- W3199591023 hasConceptScore W3199591023C154945302 @default.
- W3199591023 hasConceptScore W3199591023C163258240 @default.
- W3199591023 hasConceptScore W3199591023C173801870 @default.
- W3199591023 hasConceptScore W3199591023C2775924081 @default.
- W3199591023 hasConceptScore W3199591023C2776582896 @default.
- W3199591023 hasConceptScore W3199591023C33923547 @default.
- W3199591023 hasConceptScore W3199591023C41008148 @default.
- W3199591023 hasConceptScore W3199591023C47446073 @default.
- W3199591023 hasConceptScore W3199591023C555008776 @default.
- W3199591023 hasConceptScore W3199591023C59822182 @default.
- W3199591023 hasConceptScore W3199591023C62520636 @default.
- W3199591023 hasConceptScore W3199591023C67186912 @default.
- W3199591023 hasConceptScore W3199591023C86803240 @default.
- W3199591023 hasIssue "01" @default.
- W3199591023 hasLocation W31995910231 @default.
- W3199591023 hasOpenAccess W3199591023 @default.
- W3199591023 hasPrimaryLocation W31995910231 @default.
- W3199591023 hasRelatedWork W150714319 @default.
- W3199591023 hasRelatedWork W1625744594 @default.
- W3199591023 hasRelatedWork W1980142791 @default.
- W3199591023 hasRelatedWork W1994695489 @default.
- W3199591023 hasRelatedWork W2007183892 @default.
- W3199591023 hasRelatedWork W2040685084 @default.
- W3199591023 hasRelatedWork W2075047218 @default.
- W3199591023 hasRelatedWork W2088400086 @default.
- W3199591023 hasRelatedWork W2156240198 @default.
- W3199591023 hasRelatedWork W2280509056 @default.
- W3199591023 hasRelatedWork W2524456635 @default.
- W3199591023 hasRelatedWork W2803859797 @default.
- W3199591023 hasRelatedWork W2809846744 @default.
- W3199591023 hasRelatedWork W2939582792 @default.
- W3199591023 hasRelatedWork W2964393936 @default.
- W3199591023 hasRelatedWork W2985451038 @default.
- W3199591023 hasRelatedWork W3080093041 @default.
- W3199591023 hasRelatedWork W3089215636 @default.
- W3199591023 hasRelatedWork W3107680157 @default.
- W3199591023 hasRelatedWork W3109103365 @default.
- W3199591023 hasVolume "1" @default.
- W3199591023 isParatext "false" @default.
- W3199591023 isRetracted "false" @default.
- W3199591023 magId "3199591023" @default.
- W3199591023 workType "article" @default.