Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199617745> ?p ?o ?g. }
- W3199617745 endingPage "128022" @default.
- W3199617745 startingPage "127985" @default.
- W3199617745 abstract "“One person’s data or experience is another person’s information” this has become the golden rule of the 21st century which has resulted in a massive reservoir of data and immense amounts of information generation. However, there is no control over the source of this information, accessibility of this information, or the quality of it, which has given rise to the presence of “misinformation.” The research community has reacted by proposing frameworks and difficulties, which are helpful for (different subtasks of) recognizing misinformation. Most of these frameworks, however, fail to consider all the aspects that can contribute to making information “credible”. Furthermore, a valid explanation for each considered feature’s contribution to the model’s decision stands missing in most work. With this in mind, the authors have attempted to produce a system that yields highly accurate decisions, thus effectively separating credible health blogs from their non-credible counterparts while providing valid user-friendly explanations. The study proposes an Explainable AI-assisted Multimodal Credibility Assessment System that examines the credibility of the platform where the blog is hosted, the credibility of the author of the blog and the credibility of the images that contribute to the blog. This novel framework contributes to the existing body of knowledge by assessing the credibility of misleading beauty blogs using multiple crucial modalities which would lead to an insightful information consumption by the users. The proposed pipeline was successfully implemented on multiple carefully curated datasets and correctly identified 274 non credible blogs out of 321 blogs with an accuracy of 97.5%, Precision of 0.973 & F1score of 0.986. Further, the Explainable AI model, with the help of several visualizations displayed the feature contributions for each blog & it’s impact and magnitude in a concise comprehensible format. The framework can be further customized and applied to various domains where presence of misinformation is of high concern such as pharmaceutical drug information, pandemic management, financial advisories, online healthcare services and cyber frauds." @default.
- W3199617745 created "2021-09-27" @default.
- W3199617745 creator A5011459459 @default.
- W3199617745 creator A5025236262 @default.
- W3199617745 creator A5063250428 @default.
- W3199617745 creator A5077770842 @default.
- W3199617745 creator A5085295335 @default.
- W3199617745 date "2021-01-01" @default.
- W3199617745 modified "2023-09-24" @default.
- W3199617745 title "Explainable AI for Multimodal Credibility Analysis: Case Study of Online Beauty Health (Mis)-Information" @default.
- W3199617745 cites W132707840 @default.
- W3199617745 cites W1883425343 @default.
- W3199617745 cites W1972577679 @default.
- W3199617745 cites W1981926277 @default.
- W3199617745 cites W1982471090 @default.
- W3199617745 cites W2007803862 @default.
- W3199617745 cites W2032985922 @default.
- W3199617745 cites W2042234874 @default.
- W3199617745 cites W2043226260 @default.
- W3199617745 cites W2047756776 @default.
- W3199617745 cites W2061529434 @default.
- W3199617745 cites W2067557477 @default.
- W3199617745 cites W2091656550 @default.
- W3199617745 cites W2115403315 @default.
- W3199617745 cites W2117138276 @default.
- W3199617745 cites W2119051895 @default.
- W3199617745 cites W2120601798 @default.
- W3199617745 cites W2122445727 @default.
- W3199617745 cites W2130582803 @default.
- W3199617745 cites W2134685785 @default.
- W3199617745 cites W2138621811 @default.
- W3199617745 cites W2165698076 @default.
- W3199617745 cites W2232384272 @default.
- W3199617745 cites W2295680652 @default.
- W3199617745 cites W2395579298 @default.
- W3199617745 cites W2517729512 @default.
- W3199617745 cites W2521537533 @default.
- W3199617745 cites W2615896489 @default.
- W3199617745 cites W2745823450 @default.
- W3199617745 cites W2786808285 @default.
- W3199617745 cites W2809598685 @default.
- W3199617745 cites W2891503716 @default.
- W3199617745 cites W2893790011 @default.
- W3199617745 cites W2898496484 @default.
- W3199617745 cites W2901763875 @default.
- W3199617745 cites W2925285378 @default.
- W3199617745 cites W2946327826 @default.
- W3199617745 cites W2951307134 @default.
- W3199617745 cites W2954996726 @default.
- W3199617745 cites W2955692055 @default.
- W3199617745 cites W2963163009 @default.
- W3199617745 cites W2970868842 @default.
- W3199617745 cites W2972472681 @default.
- W3199617745 cites W2980267532 @default.
- W3199617745 cites W2980365090 @default.
- W3199617745 cites W2982058372 @default.
- W3199617745 cites W2984683276 @default.
- W3199617745 cites W2997841508 @default.
- W3199617745 cites W3008498428 @default.
- W3199617745 cites W3017402509 @default.
- W3199617745 cites W3023208170 @default.
- W3199617745 cites W3035359990 @default.
- W3199617745 cites W3036178765 @default.
- W3199617745 cites W3046585720 @default.
- W3199617745 cites W3083936684 @default.
- W3199617745 cites W3089691460 @default.
- W3199617745 cites W3090167452 @default.
- W3199617745 cites W3129391370 @default.
- W3199617745 cites W3203269871 @default.
- W3199617745 cites W4206273048 @default.
- W3199617745 cites W4230140511 @default.
- W3199617745 cites W4240407914 @default.
- W3199617745 cites W4288079542 @default.
- W3199617745 cites W2970388140 @default.
- W3199617745 doi "https://doi.org/10.1109/access.2021.3111527" @default.
- W3199617745 hasPublicationYear "2021" @default.
- W3199617745 type Work @default.
- W3199617745 sameAs 3199617745 @default.
- W3199617745 citedByCount "2" @default.
- W3199617745 countsByYear W31996177452022 @default.
- W3199617745 countsByYear W31996177452023 @default.
- W3199617745 crossrefType "journal-article" @default.
- W3199617745 hasAuthorship W3199617745A5011459459 @default.
- W3199617745 hasAuthorship W3199617745A5025236262 @default.
- W3199617745 hasAuthorship W3199617745A5063250428 @default.
- W3199617745 hasAuthorship W3199617745A5077770842 @default.
- W3199617745 hasAuthorship W3199617745A5085295335 @default.
- W3199617745 hasBestOaLocation W31996177451 @default.
- W3199617745 hasConcept C107038049 @default.
- W3199617745 hasConcept C142362112 @default.
- W3199617745 hasConcept C154945302 @default.
- W3199617745 hasConcept C17744445 @default.
- W3199617745 hasConcept C199539241 @default.
- W3199617745 hasConcept C23123220 @default.
- W3199617745 hasConcept C2780224610 @default.
- W3199617745 hasConcept C2780620123 @default.
- W3199617745 hasConcept C41008148 @default.
- W3199617745 hasConceptScore W3199617745C107038049 @default.