Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199644548> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3199644548 abstract "Pre-trained language models (LMs) have become ubiquitous in solving various natural language processing (NLP) tasks. There has been increasing interest in what knowledge these LMs contain and how we can extract that knowledge, treating LMs as knowledge bases (KBs). While there has been much work on probing LMs in the general domain, there has been little attention to whether these powerful LMs can be used as domain-specific KBs. To this end, we create the BioLAMA benchmark, which is comprised of 49K biomedical factual knowledge triples for probing biomedical LMs. We find that biomedical LMs with recently proposed probing methods can achieve up to 18.51% Acc@5 on retrieving biomedical knowledge. Although this seems promising given the task difficulty, our detailed analyses reveal that most predictions are highly correlated with prompt templates without any subjects, hence producing similar results on each relation and hindering their capabilities to be used as domain-specific KBs. We hope that BioLAMA can serve as a challenging benchmark for biomedical factual probing." @default.
- W3199644548 created "2021-09-27" @default.
- W3199644548 creator A5000767500 @default.
- W3199644548 creator A5002413587 @default.
- W3199644548 creator A5003685784 @default.
- W3199644548 creator A5020746366 @default.
- W3199644548 creator A5076917278 @default.
- W3199644548 creator A5091195005 @default.
- W3199644548 date "2021-09-15" @default.
- W3199644548 modified "2023-09-23" @default.
- W3199644548 title "Can Language Models be Biomedical Knowledge Bases?" @default.
- W3199644548 cites W2159583324 @default.
- W3199644548 cites W2533611849 @default.
- W3199644548 cites W2911489562 @default.
- W3199644548 cites W2962739339 @default.
- W3199644548 cites W2963341956 @default.
- W3199644548 cites W2970476646 @default.
- W3199644548 cites W2970771982 @default.
- W3199644548 cites W2975135115 @default.
- W3199644548 cites W3034229721 @default.
- W3199644548 cites W3093194543 @default.
- W3199644548 cites W3100283070 @default.
- W3199644548 cites W3100452049 @default.
- W3199644548 cites W3152497014 @default.
- W3199644548 cites W3173673636 @default.
- W3199644548 doi "https://doi.org/10.48550/arxiv.2109.07154" @default.
- W3199644548 hasPublicationYear "2021" @default.
- W3199644548 type Work @default.
- W3199644548 sameAs 3199644548 @default.
- W3199644548 citedByCount "0" @default.
- W3199644548 crossrefType "posted-content" @default.
- W3199644548 hasAuthorship W3199644548A5000767500 @default.
- W3199644548 hasAuthorship W3199644548A5002413587 @default.
- W3199644548 hasAuthorship W3199644548A5003685784 @default.
- W3199644548 hasAuthorship W3199644548A5020746366 @default.
- W3199644548 hasAuthorship W3199644548A5076917278 @default.
- W3199644548 hasAuthorship W3199644548A5091195005 @default.
- W3199644548 hasBestOaLocation W31996445481 @default.
- W3199644548 hasConcept C119857082 @default.
- W3199644548 hasConcept C124101348 @default.
- W3199644548 hasConcept C127413603 @default.
- W3199644548 hasConcept C13280743 @default.
- W3199644548 hasConcept C134306372 @default.
- W3199644548 hasConcept C154945302 @default.
- W3199644548 hasConcept C185798385 @default.
- W3199644548 hasConcept C201995342 @default.
- W3199644548 hasConcept C204321447 @default.
- W3199644548 hasConcept C205649164 @default.
- W3199644548 hasConcept C207685749 @default.
- W3199644548 hasConcept C25343380 @default.
- W3199644548 hasConcept C2780451532 @default.
- W3199644548 hasConcept C33923547 @default.
- W3199644548 hasConcept C36503486 @default.
- W3199644548 hasConcept C41008148 @default.
- W3199644548 hasConceptScore W3199644548C119857082 @default.
- W3199644548 hasConceptScore W3199644548C124101348 @default.
- W3199644548 hasConceptScore W3199644548C127413603 @default.
- W3199644548 hasConceptScore W3199644548C13280743 @default.
- W3199644548 hasConceptScore W3199644548C134306372 @default.
- W3199644548 hasConceptScore W3199644548C154945302 @default.
- W3199644548 hasConceptScore W3199644548C185798385 @default.
- W3199644548 hasConceptScore W3199644548C201995342 @default.
- W3199644548 hasConceptScore W3199644548C204321447 @default.
- W3199644548 hasConceptScore W3199644548C205649164 @default.
- W3199644548 hasConceptScore W3199644548C207685749 @default.
- W3199644548 hasConceptScore W3199644548C25343380 @default.
- W3199644548 hasConceptScore W3199644548C2780451532 @default.
- W3199644548 hasConceptScore W3199644548C33923547 @default.
- W3199644548 hasConceptScore W3199644548C36503486 @default.
- W3199644548 hasConceptScore W3199644548C41008148 @default.
- W3199644548 hasLocation W31996445481 @default.
- W3199644548 hasOpenAccess W3199644548 @default.
- W3199644548 hasPrimaryLocation W31996445481 @default.
- W3199644548 hasRelatedWork W2081647779 @default.
- W3199644548 hasRelatedWork W2954843021 @default.
- W3199644548 hasRelatedWork W2983785000 @default.
- W3199644548 hasRelatedWork W2999356315 @default.
- W3199644548 hasRelatedWork W3123920941 @default.
- W3199644548 hasRelatedWork W3172706523 @default.
- W3199644548 hasRelatedWork W3185852197 @default.
- W3199644548 hasRelatedWork W4304194246 @default.
- W3199644548 hasRelatedWork W4319756016 @default.
- W3199644548 hasRelatedWork W4379924990 @default.
- W3199644548 isParatext "false" @default.
- W3199644548 isRetracted "false" @default.
- W3199644548 magId "3199644548" @default.
- W3199644548 workType "article" @default.