Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199647575> ?p ?o ?g. }
- W3199647575 endingPage "1672" @default.
- W3199647575 startingPage "1672" @default.
- W3199647575 abstract "Objectives: Deep learning methods have achieved impressive diagnostic performance in the field of radiology. The current study aimed to use deep learning methods to detect caries lesions, classify different radiographic extensions on panoramic films, and compare the classification results with those of expert dentists. Methods: A total of 1160 dental panoramic films were evaluated by three expert dentists. All caries lesions in the films were marked with circles, whose combination was defined as the reference dataset. A training and validation dataset (1071) and a test dataset (89) were then established from the reference dataset. A convolutional neural network, called nnU-Net, was applied to detect caries lesions, and DenseNet121 was applied to classify the lesions according to their depths (dentin lesions in the outer, middle, or inner third D1/2/3 of dentin). The performance of the test dataset in the trained nnU-Net and DenseNet121 models was compared with the results of six expert dentists in terms of the intersection over union (IoU), Dice coefficient, accuracy, precision, recall, negative predictive value (NPV), and F1-score metrics. Results: nnU-Net yielded caries lesion segmentation IoU and Dice coefficient values of 0.785 and 0.663, respectively, and the accuracy and recall rate of nnU-Net were 0.986 and 0.821, respectively. The results of the expert dentists and the neural network were shown to be no different in terms of accuracy, precision, recall, NPV, and F1-score. For caries depth classification, DenseNet121 showed an overall accuracy of 0.957 for D1 lesions, 0.832 for D2 lesions, and 0.863 for D3 lesions. The recall results of the D1/D2/D3 lesions were 0.765, 0.652, and 0.918, respectively. All metric values, including accuracy, precision, recall, NPV, and F1-score values, were proven to be no different from those of the experienced dentists. Conclusion: In detecting and classifying caries lesions on dental panoramic radiographs, the performance of deep learning methods was similar to that of expert dentists. The impact of applying these well-trained neural networks for disease diagnosis and treatment decision making should be explored." @default.
- W3199647575 created "2021-09-27" @default.
- W3199647575 creator A5005328116 @default.
- W3199647575 creator A5016335119 @default.
- W3199647575 creator A5027842206 @default.
- W3199647575 creator A5050374888 @default.
- W3199647575 date "2021-09-13" @default.
- W3199647575 modified "2023-10-11" @default.
- W3199647575 title "Deep Learning for Caries Detection and Classification" @default.
- W3199647575 cites W2026098863 @default.
- W3199647575 cites W2076063813 @default.
- W3199647575 cites W2081209150 @default.
- W3199647575 cites W2108419998 @default.
- W3199647575 cites W2581082771 @default.
- W3199647575 cites W2590129266 @default.
- W3199647575 cites W2909244736 @default.
- W3199647575 cites W2987910689 @default.
- W3199647575 cites W2993845530 @default.
- W3199647575 cites W3013681994 @default.
- W3199647575 cites W3027234488 @default.
- W3199647575 cites W3027764902 @default.
- W3199647575 cites W3038992530 @default.
- W3199647575 cites W3096543177 @default.
- W3199647575 cites W3112701542 @default.
- W3199647575 cites W3153478335 @default.
- W3199647575 cites W3175533491 @default.
- W3199647575 doi "https://doi.org/10.3390/diagnostics11091672" @default.
- W3199647575 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8469830" @default.
- W3199647575 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34574013" @default.
- W3199647575 hasPublicationYear "2021" @default.
- W3199647575 type Work @default.
- W3199647575 sameAs 3199647575 @default.
- W3199647575 citedByCount "38" @default.
- W3199647575 countsByYear W31996475752022 @default.
- W3199647575 countsByYear W31996475752023 @default.
- W3199647575 crossrefType "journal-article" @default.
- W3199647575 hasAuthorship W3199647575A5005328116 @default.
- W3199647575 hasAuthorship W3199647575A5016335119 @default.
- W3199647575 hasAuthorship W3199647575A5027842206 @default.
- W3199647575 hasAuthorship W3199647575A5050374888 @default.
- W3199647575 hasBestOaLocation W31996475751 @default.
- W3199647575 hasConcept C100660578 @default.
- W3199647575 hasConcept C108583219 @default.
- W3199647575 hasConcept C124504099 @default.
- W3199647575 hasConcept C126322002 @default.
- W3199647575 hasConcept C148524875 @default.
- W3199647575 hasConcept C153180895 @default.
- W3199647575 hasConcept C154945302 @default.
- W3199647575 hasConcept C15744967 @default.
- W3199647575 hasConcept C163892561 @default.
- W3199647575 hasConcept C180747234 @default.
- W3199647575 hasConcept C199343813 @default.
- W3199647575 hasConcept C3019719930 @default.
- W3199647575 hasConcept C41008148 @default.
- W3199647575 hasConcept C50644808 @default.
- W3199647575 hasConcept C71924100 @default.
- W3199647575 hasConcept C81363708 @default.
- W3199647575 hasConcept C81669768 @default.
- W3199647575 hasConcept C89600930 @default.
- W3199647575 hasConceptScore W3199647575C100660578 @default.
- W3199647575 hasConceptScore W3199647575C108583219 @default.
- W3199647575 hasConceptScore W3199647575C124504099 @default.
- W3199647575 hasConceptScore W3199647575C126322002 @default.
- W3199647575 hasConceptScore W3199647575C148524875 @default.
- W3199647575 hasConceptScore W3199647575C153180895 @default.
- W3199647575 hasConceptScore W3199647575C154945302 @default.
- W3199647575 hasConceptScore W3199647575C15744967 @default.
- W3199647575 hasConceptScore W3199647575C163892561 @default.
- W3199647575 hasConceptScore W3199647575C180747234 @default.
- W3199647575 hasConceptScore W3199647575C199343813 @default.
- W3199647575 hasConceptScore W3199647575C3019719930 @default.
- W3199647575 hasConceptScore W3199647575C41008148 @default.
- W3199647575 hasConceptScore W3199647575C50644808 @default.
- W3199647575 hasConceptScore W3199647575C71924100 @default.
- W3199647575 hasConceptScore W3199647575C81363708 @default.
- W3199647575 hasConceptScore W3199647575C81669768 @default.
- W3199647575 hasConceptScore W3199647575C89600930 @default.
- W3199647575 hasFunder F4320338464 @default.
- W3199647575 hasIssue "9" @default.
- W3199647575 hasLocation W31996475751 @default.
- W3199647575 hasLocation W31996475752 @default.
- W3199647575 hasLocation W31996475753 @default.
- W3199647575 hasLocation W31996475754 @default.
- W3199647575 hasOpenAccess W3199647575 @default.
- W3199647575 hasPrimaryLocation W31996475751 @default.
- W3199647575 hasRelatedWork W2732542196 @default.
- W3199647575 hasRelatedWork W2738221750 @default.
- W3199647575 hasRelatedWork W2769435486 @default.
- W3199647575 hasRelatedWork W3102253946 @default.
- W3199647575 hasRelatedWork W3144574764 @default.
- W3199647575 hasRelatedWork W3156786002 @default.
- W3199647575 hasRelatedWork W3166467183 @default.
- W3199647575 hasRelatedWork W4293211451 @default.
- W3199647575 hasRelatedWork W4308191152 @default.
- W3199647575 hasRelatedWork W564581980 @default.
- W3199647575 hasVolume "11" @default.
- W3199647575 isParatext "false" @default.
- W3199647575 isRetracted "false" @default.