Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199673602> ?p ?o ?g. }
- W3199673602 abstract "To develop and evaluate a deep learning model (DLM) for predicting the risk stratification of gastrointestinal stromal tumors (GISTs).Preoperative contrast-enhanced CT images of 733 patients with GISTs were retrospectively obtained from two centers between January 2011 and June 2020. The datasets were split into training (n = 241), testing (n = 104), and external validation cohorts (n = 388). A DLM for predicting the risk stratification of GISTs was developed using a convolutional neural network and evaluated in the testing and external validation cohorts. The performance of the DLM was compared with that of radiomics model by using the area under the receiver operating characteristic curves (AUROCs) and the Obuchowski index. The attention area of the DLM was visualized as a heatmap by gradient-weighted class activation mapping.In the testing cohort, the DLM had AUROCs of 0.90 (95% confidence interval [CI]: 0.84, 0.96), 0.80 (95% CI: 0.72, 0.88), and 0.89 (95% CI: 0.83, 0.95) for low-malignant, intermediate-malignant, and high-malignant GISTs, respectively. In the external validation cohort, the AUROCs of the DLM were 0.87 (95% CI: 0.83, 0.91), 0.64 (95% CI: 0.60, 0.68), and 0.85 (95% CI: 0.81, 0.89) for low-malignant, intermediate-malignant, and high-malignant GISTs, respectively. The DLM (Obuchowski index: training, 0.84; external validation, 0.79) outperformed the radiomics model (Obuchowski index: training, 0.77; external validation, 0.77) for predicting risk stratification of GISTs. The relevant subregions were successfully highlighted with attention heatmap on the CT images for further clinical review.The DLM showed good performance for predicting the risk stratification of GISTs using CT images and achieved better performance than that of radiomics model." @default.
- W3199673602 created "2021-09-27" @default.
- W3199673602 creator A5007322337 @default.
- W3199673602 creator A5010405626 @default.
- W3199673602 creator A5011883201 @default.
- W3199673602 creator A5015431603 @default.
- W3199673602 creator A5019456663 @default.
- W3199673602 creator A5044868467 @default.
- W3199673602 creator A5050236002 @default.
- W3199673602 creator A5056611330 @default.
- W3199673602 creator A5058987076 @default.
- W3199673602 creator A5067771631 @default.
- W3199673602 creator A5068922999 @default.
- W3199673602 creator A5077959818 @default.
- W3199673602 creator A5083560551 @default.
- W3199673602 date "2021-09-17" @default.
- W3199673602 modified "2023-10-03" @default.
- W3199673602 title "Preoperative CT-Based Deep Learning Model for Predicting Risk Stratification in Patients With Gastrointestinal Stromal Tumors" @default.
- W3199673602 cites W1546148535 @default.
- W3199673602 cites W1978604553 @default.
- W3199673602 cites W1981491302 @default.
- W3199673602 cites W1987037759 @default.
- W3199673602 cites W2108431450 @default.
- W3199673602 cites W2174661749 @default.
- W3199673602 cites W2216920222 @default.
- W3199673602 cites W2336163466 @default.
- W3199673602 cites W2408863129 @default.
- W3199673602 cites W2528491735 @default.
- W3199673602 cites W2581082771 @default.
- W3199673602 cites W2599515504 @default.
- W3199673602 cites W2757250931 @default.
- W3199673602 cites W2767128594 @default.
- W3199673602 cites W2767957012 @default.
- W3199673602 cites W2801894005 @default.
- W3199673602 cites W2803760365 @default.
- W3199673602 cites W2805725835 @default.
- W3199673602 cites W2806717565 @default.
- W3199673602 cites W2883318391 @default.
- W3199673602 cites W2885164421 @default.
- W3199673602 cites W2888770844 @default.
- W3199673602 cites W2891968130 @default.
- W3199673602 cites W2892235321 @default.
- W3199673602 cites W2894585861 @default.
- W3199673602 cites W2903172822 @default.
- W3199673602 cites W2907852421 @default.
- W3199673602 cites W2911715281 @default.
- W3199673602 cites W2919115771 @default.
- W3199673602 cites W2921476071 @default.
- W3199673602 cites W2931841311 @default.
- W3199673602 cites W2943160946 @default.
- W3199673602 cites W2955107871 @default.
- W3199673602 cites W2989693433 @default.
- W3199673602 cites W3005803859 @default.
- W3199673602 cites W3008098709 @default.
- W3199673602 cites W3008390679 @default.
- W3199673602 cites W3010409005 @default.
- W3199673602 cites W3038128532 @default.
- W3199673602 cites W3082253829 @default.
- W3199673602 cites W3097394391 @default.
- W3199673602 cites W3171039196 @default.
- W3199673602 cites W4210999713 @default.
- W3199673602 doi "https://doi.org/10.3389/fonc.2021.750875" @default.
- W3199673602 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8496403" @default.
- W3199673602 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34631589" @default.
- W3199673602 hasPublicationYear "2021" @default.
- W3199673602 type Work @default.
- W3199673602 sameAs 3199673602 @default.
- W3199673602 citedByCount "6" @default.
- W3199673602 countsByYear W31996736022022 @default.
- W3199673602 countsByYear W31996736022023 @default.
- W3199673602 crossrefType "journal-article" @default.
- W3199673602 hasAuthorship W3199673602A5007322337 @default.
- W3199673602 hasAuthorship W3199673602A5010405626 @default.
- W3199673602 hasAuthorship W3199673602A5011883201 @default.
- W3199673602 hasAuthorship W3199673602A5015431603 @default.
- W3199673602 hasAuthorship W3199673602A5019456663 @default.
- W3199673602 hasAuthorship W3199673602A5044868467 @default.
- W3199673602 hasAuthorship W3199673602A5050236002 @default.
- W3199673602 hasAuthorship W3199673602A5056611330 @default.
- W3199673602 hasAuthorship W3199673602A5058987076 @default.
- W3199673602 hasAuthorship W3199673602A5067771631 @default.
- W3199673602 hasAuthorship W3199673602A5068922999 @default.
- W3199673602 hasAuthorship W3199673602A5077959818 @default.
- W3199673602 hasAuthorship W3199673602A5083560551 @default.
- W3199673602 hasBestOaLocation W31996736021 @default.
- W3199673602 hasConcept C126322002 @default.
- W3199673602 hasConcept C126838900 @default.
- W3199673602 hasConcept C2778559731 @default.
- W3199673602 hasConcept C3020404979 @default.
- W3199673602 hasConcept C44249647 @default.
- W3199673602 hasConcept C58471807 @default.
- W3199673602 hasConcept C71924100 @default.
- W3199673602 hasConcept C72563966 @default.
- W3199673602 hasConceptScore W3199673602C126322002 @default.
- W3199673602 hasConceptScore W3199673602C126838900 @default.
- W3199673602 hasConceptScore W3199673602C2778559731 @default.
- W3199673602 hasConceptScore W3199673602C3020404979 @default.
- W3199673602 hasConceptScore W3199673602C44249647 @default.
- W3199673602 hasConceptScore W3199673602C58471807 @default.
- W3199673602 hasConceptScore W3199673602C71924100 @default.