Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199698081> ?p ?o ?g. }
- W3199698081 endingPage "15" @default.
- W3199698081 startingPage "1" @default.
- W3199698081 abstract "Despite the growing interest among researchers, satellite-based prediction of soil salinity remains highly uncertain. The improvements in prediction accuracy reported in previous studies are usually limited to a single area. We performed a meta-analysis of regional satellite-based soil salinity predictions combined with <i>in situ</i> soil sampling and machine learning. Based on <inline-formula> <tex-math notation=LaTeX>$R^{2}$ </tex-math></inline-formula> and root-mean-square error (RMSE) collected, we evaluated the effects of various features on the model accuracy and established a Bayesian network to evaluate the joint causal effect of multifeatures. Most significant differences were found in soil sampling schemes and characteristics of the study area, including the mean and variability (averaged <inline-formula> <tex-math notation=LaTeX>$R^{2}$ </tex-math></inline-formula> of 0.75 for soil sample sets with lower salinity variation and 0.62 for others) of the salinity, climate type (<inline-formula> <tex-math notation=LaTeX>$R^{2}$ </tex-math></inline-formula> of 0.64 in arid areas and 0.74 in others), soil texture (<inline-formula> <tex-math notation=LaTeX>$R^{2}$ </tex-math></inline-formula> of 0.66 in sandy areas and 0.57 in others), and the interval between sampling date and satellite data acquisition date (<inline-formula> <tex-math notation=LaTeX>$R^{2}$ </tex-math></inline-formula> of 0.53 under the condition of over 15 days and 0.65 in others). Generally, using different satellite data has limited effects on model performance among which Sentinel-2 performed better (<inline-formula> <tex-math notation=LaTeX>$R^{2} $ </tex-math></inline-formula> = 0.72) than Landsat (<inline-formula> <tex-math notation=LaTeX>$R^{2} $ </tex-math></inline-formula> = 0.66). The sampling of subsamples for each sample should focus on their subpixel-scale spatial heterogeneity across satellite data rather than the number of subsamples. It is also necessary to select appropriate vegetation and salinity indices for different satellite data under different vegetation conditions. Among algorithms, random forests (<inline-formula> <tex-math notation=LaTeX>$R^{2} $ </tex-math></inline-formula> = 0.70) and support vector machines (<inline-formula> <tex-math notation=LaTeX>$R^{2} $ </tex-math></inline-formula> = 0.71) performed best." @default.
- W3199698081 created "2021-09-27" @default.
- W3199698081 creator A5016218994 @default.
- W3199698081 creator A5027566654 @default.
- W3199698081 creator A5028972991 @default.
- W3199698081 creator A5036817334 @default.
- W3199698081 creator A5037774492 @default.
- W3199698081 creator A5045479938 @default.
- W3199698081 creator A5059593093 @default.
- W3199698081 creator A5078727362 @default.
- W3199698081 creator A5081055268 @default.
- W3199698081 date "2022-01-01" @default.
- W3199698081 modified "2023-10-18" @default.
- W3199698081 title "A Global Meta-Analysis of Soil Salinity Prediction Integrating Satellite Remote Sensing, Soil Sampling, and Machine Learning" @default.
- W3199698081 cites W1810287876 @default.
- W3199698081 cites W1821210865 @default.
- W3199698081 cites W1967857296 @default.
- W3199698081 cites W1977175381 @default.
- W3199698081 cites W1979204143 @default.
- W3199698081 cites W1979364468 @default.
- W3199698081 cites W1985690171 @default.
- W3199698081 cites W2003625635 @default.
- W3199698081 cites W2020456298 @default.
- W3199698081 cites W2023199104 @default.
- W3199698081 cites W2025734775 @default.
- W3199698081 cites W2049234252 @default.
- W3199698081 cites W2064102106 @default.
- W3199698081 cites W2077689075 @default.
- W3199698081 cites W2079087023 @default.
- W3199698081 cites W2089346430 @default.
- W3199698081 cites W2092031873 @default.
- W3199698081 cites W2092541776 @default.
- W3199698081 cites W2094667953 @default.
- W3199698081 cites W2094760192 @default.
- W3199698081 cites W2124873064 @default.
- W3199698081 cites W2130560194 @default.
- W3199698081 cites W2149350706 @default.
- W3199698081 cites W2549317255 @default.
- W3199698081 cites W2582369608 @default.
- W3199698081 cites W2622143148 @default.
- W3199698081 cites W2758856240 @default.
- W3199698081 cites W2762355583 @default.
- W3199698081 cites W2792956321 @default.
- W3199698081 cites W2793841692 @default.
- W3199698081 cites W2891975230 @default.
- W3199698081 cites W2892249983 @default.
- W3199698081 cites W2893106156 @default.
- W3199698081 cites W2894026248 @default.
- W3199698081 cites W2895779745 @default.
- W3199698081 cites W2899959169 @default.
- W3199698081 cites W2901434766 @default.
- W3199698081 cites W2902743447 @default.
- W3199698081 cites W2908247056 @default.
- W3199698081 cites W2910835070 @default.
- W3199698081 cites W2913054803 @default.
- W3199698081 cites W2922433635 @default.
- W3199698081 cites W2953026644 @default.
- W3199698081 cites W2982434552 @default.
- W3199698081 cites W2991375462 @default.
- W3199698081 cites W3005414182 @default.
- W3199698081 cites W3005468539 @default.
- W3199698081 cites W3006286553 @default.
- W3199698081 cites W3037227400 @default.
- W3199698081 cites W3043487840 @default.
- W3199698081 cites W3097245740 @default.
- W3199698081 cites W3110295943 @default.
- W3199698081 cites W3122621468 @default.
- W3199698081 cites W3177036350 @default.
- W3199698081 cites W4294215472 @default.
- W3199698081 doi "https://doi.org/10.1109/tgrs.2021.3109819" @default.
- W3199698081 hasPublicationYear "2022" @default.
- W3199698081 type Work @default.
- W3199698081 sameAs 3199698081 @default.
- W3199698081 citedByCount "7" @default.
- W3199698081 countsByYear W31996980812022 @default.
- W3199698081 countsByYear W31996980812023 @default.
- W3199698081 crossrefType "journal-article" @default.
- W3199698081 hasAuthorship W3199698081A5016218994 @default.
- W3199698081 hasAuthorship W3199698081A5027566654 @default.
- W3199698081 hasAuthorship W3199698081A5028972991 @default.
- W3199698081 hasAuthorship W3199698081A5036817334 @default.
- W3199698081 hasAuthorship W3199698081A5037774492 @default.
- W3199698081 hasAuthorship W3199698081A5045479938 @default.
- W3199698081 hasAuthorship W3199698081A5059593093 @default.
- W3199698081 hasAuthorship W3199698081A5078727362 @default.
- W3199698081 hasAuthorship W3199698081A5081055268 @default.
- W3199698081 hasConcept C105795698 @default.
- W3199698081 hasConcept C106131492 @default.
- W3199698081 hasConcept C111368507 @default.
- W3199698081 hasConcept C11413529 @default.
- W3199698081 hasConcept C127313418 @default.
- W3199698081 hasConcept C127413603 @default.
- W3199698081 hasConcept C129513315 @default.
- W3199698081 hasConcept C139945424 @default.
- W3199698081 hasConcept C140779682 @default.
- W3199698081 hasConcept C141650431 @default.
- W3199698081 hasConcept C146978453 @default.
- W3199698081 hasConcept C159390177 @default.