Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199699162> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3199699162 endingPage "1290" @default.
- W3199699162 startingPage "1290" @default.
- W3199699162 abstract "Remotely sensed imagery has been used to support forest ecology and management for decades. In modern times, the propagation of high-spatial-resolution image analysis techniques and automated workflows have further strengthened this synergy, leading to the inquiry into more complex, local-scale, ecosystem characteristics. To appropriately inform decisions in forestry ecology and management, the most reliable and efficient methods should be adopted. For this reason, our research compares visual interpretation to digital (automated) processing for forest plot composition and individual tree identification. During this investigation, we qualitatively and quantitatively evaluated the process of classifying species groups within complex, mixed-species forests in New England. This analysis included a comparison of three high-resolution remotely sensed imagery sources: Google Earth, National Agriculture Imagery Program (NAIP) imagery, and unmanned aerial system (UAS) imagery. We discovered that, although the level of detail afforded by the UAS imagery spatial resolution (3.02 cm average pixel size) improved the visual interpretation results (7.87–9.59%), the highest thematic accuracy was still only 54.44% for the generalized composition groups. Our qualitative analysis of the uncertainty for visually interpreting different composition classes revealed the persistence of mislabeled hardwood compositions (including an early successional class) and an inability to consistently differentiate between ‘pure’ and ‘mixed’ stands. The results of digitally classifying the same forest compositions produced a higher level of accuracy for both detecting individual trees (93.9%) and labeling them (59.62–70.48%) using machine learning algorithms including classification and regression trees, random forest, and support vector machines. These results indicate that digital, automated, classification produced an increase in overall accuracy of 16.04% over visual interpretation for generalized forest composition classes. Other studies, which incorporate multitemporal, multispectral, or data fusion approaches provide evidence for further widening this gap. Further refinement of the methods for individual tree detection, delineation, and classification should be developed for structurally and compositionally complex forests to supplement the critical deficiency in local-scale forest information around the world." @default.
- W3199699162 created "2021-09-27" @default.
- W3199699162 creator A5022247838 @default.
- W3199699162 creator A5085459292 @default.
- W3199699162 date "2021-09-21" @default.
- W3199699162 modified "2023-09-30" @default.
- W3199699162 title "A Comparison of Methods for Determining Forest Composition from High-Spatial-Resolution Remotely Sensed Imagery" @default.
- W3199699162 doi "https://doi.org/10.3390/f12091290" @default.
- W3199699162 hasPublicationYear "2021" @default.
- W3199699162 type Work @default.
- W3199699162 sameAs 3199699162 @default.
- W3199699162 citedByCount "3" @default.
- W3199699162 countsByYear W31996991622021 @default.
- W3199699162 countsByYear W31996991622022 @default.
- W3199699162 crossrefType "journal-article" @default.
- W3199699162 hasAuthorship W3199699162A5022247838 @default.
- W3199699162 hasAuthorship W3199699162A5085459292 @default.
- W3199699162 hasBestOaLocation W31996991621 @default.
- W3199699162 hasConcept C12267149 @default.
- W3199699162 hasConcept C142724271 @default.
- W3199699162 hasConcept C154945302 @default.
- W3199699162 hasConcept C169258074 @default.
- W3199699162 hasConcept C18903297 @default.
- W3199699162 hasConcept C205649164 @default.
- W3199699162 hasConcept C2776133958 @default.
- W3199699162 hasConcept C2778102629 @default.
- W3199699162 hasConcept C2778755073 @default.
- W3199699162 hasConcept C41008148 @default.
- W3199699162 hasConcept C58640448 @default.
- W3199699162 hasConcept C62649853 @default.
- W3199699162 hasConcept C71924100 @default.
- W3199699162 hasConcept C86803240 @default.
- W3199699162 hasConcept C93692415 @default.
- W3199699162 hasConceptScore W3199699162C12267149 @default.
- W3199699162 hasConceptScore W3199699162C142724271 @default.
- W3199699162 hasConceptScore W3199699162C154945302 @default.
- W3199699162 hasConceptScore W3199699162C169258074 @default.
- W3199699162 hasConceptScore W3199699162C18903297 @default.
- W3199699162 hasConceptScore W3199699162C205649164 @default.
- W3199699162 hasConceptScore W3199699162C2776133958 @default.
- W3199699162 hasConceptScore W3199699162C2778102629 @default.
- W3199699162 hasConceptScore W3199699162C2778755073 @default.
- W3199699162 hasConceptScore W3199699162C41008148 @default.
- W3199699162 hasConceptScore W3199699162C58640448 @default.
- W3199699162 hasConceptScore W3199699162C62649853 @default.
- W3199699162 hasConceptScore W3199699162C71924100 @default.
- W3199699162 hasConceptScore W3199699162C86803240 @default.
- W3199699162 hasConceptScore W3199699162C93692415 @default.
- W3199699162 hasIssue "9" @default.
- W3199699162 hasLocation W31996991621 @default.
- W3199699162 hasLocation W31996991622 @default.
- W3199699162 hasOpenAccess W3199699162 @default.
- W3199699162 hasPrimaryLocation W31996991621 @default.
- W3199699162 hasRelatedWork W117302946 @default.
- W3199699162 hasRelatedWork W1970680079 @default.
- W3199699162 hasRelatedWork W1995077345 @default.
- W3199699162 hasRelatedWork W2055743521 @default.
- W3199699162 hasRelatedWork W2140937121 @default.
- W3199699162 hasRelatedWork W2278948991 @default.
- W3199699162 hasRelatedWork W2317744235 @default.
- W3199699162 hasRelatedWork W2372655990 @default.
- W3199699162 hasRelatedWork W584467110 @default.
- W3199699162 hasRelatedWork W603675201 @default.
- W3199699162 hasVolume "12" @default.
- W3199699162 isParatext "false" @default.
- W3199699162 isRetracted "false" @default.
- W3199699162 magId "3199699162" @default.
- W3199699162 workType "article" @default.