Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199712979> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W3199712979 abstract "At the present stage of development of hardware and software in the field of information technology an important place is occupied by information security, which implies the use of additional means to ensure secure processing of confidential data of end-users of target systems. The main problem, allocated in existing electronic computers, is insufficient protection of hardware ports from external influences. An example of such vulnerabilities is the USB Rubber Ducky hardware and software security solution from hak5 that exploits vulnerabilities by emulating peripherals to perform unauthorised actions on the target machine. Offensive Security's advanced, similar solutions allow complex target machine interception and remote control of the target machine, underscoring the urgency of the problem at hand. To solve this problem, an intelligent system was developed to evaluate and calculate the states of connected peripheral devices, in particular, to evaluate the comparability of input groups of peripheral device parameters. To improve security, a deep learning artificial neural network process was integrated into the implemented system. Based on user actions – software processing call speed, user errors and existing exploitation patterns of variant vulnerabilities – it can identify a device as potentially dangerous and then hardware disconnect the USB port. The artificial neural network's learning functionality based on user behaviour patterns also allowed for personal identification without an active account, which has a positive impact on system security. An important feature of the system is also the ability to interact with the system remotely using the Telegram API." @default.
- W3199712979 created "2021-09-27" @default.
- W3199712979 creator A5006561124 @default.
- W3199712979 creator A5039091527 @default.
- W3199712979 date "2021-09-05" @default.
- W3199712979 modified "2023-10-17" @default.
- W3199712979 title "Intelligent System for Preventing Rubber Ducky Attacks Using Deep Learning Neural Networks" @default.
- W3199712979 cites W2737681980 @default.
- W3199712979 cites W2982137797 @default.
- W3199712979 cites W3112420917 @default.
- W3199712979 cites W3153381184 @default.
- W3199712979 cites W4210984920 @default.
- W3199712979 cites W4253959469 @default.
- W3199712979 cites W4255141494 @default.
- W3199712979 cites W4300171661 @default.
- W3199712979 doi "https://doi.org/10.1109/rusautocon52004.2021.9537497" @default.
- W3199712979 hasPublicationYear "2021" @default.
- W3199712979 type Work @default.
- W3199712979 sameAs 3199712979 @default.
- W3199712979 citedByCount "0" @default.
- W3199712979 crossrefType "proceedings-article" @default.
- W3199712979 hasAuthorship W3199712979A5006561124 @default.
- W3199712979 hasAuthorship W3199712979A5039091527 @default.
- W3199712979 hasConcept C108583219 @default.
- W3199712979 hasConcept C111919701 @default.
- W3199712979 hasConcept C149635348 @default.
- W3199712979 hasConcept C154945302 @default.
- W3199712979 hasConcept C2777904410 @default.
- W3199712979 hasConcept C38652104 @default.
- W3199712979 hasConcept C41008148 @default.
- W3199712979 hasConcept C50644808 @default.
- W3199712979 hasConcept C98045186 @default.
- W3199712979 hasConceptScore W3199712979C108583219 @default.
- W3199712979 hasConceptScore W3199712979C111919701 @default.
- W3199712979 hasConceptScore W3199712979C149635348 @default.
- W3199712979 hasConceptScore W3199712979C154945302 @default.
- W3199712979 hasConceptScore W3199712979C2777904410 @default.
- W3199712979 hasConceptScore W3199712979C38652104 @default.
- W3199712979 hasConceptScore W3199712979C41008148 @default.
- W3199712979 hasConceptScore W3199712979C50644808 @default.
- W3199712979 hasConceptScore W3199712979C98045186 @default.
- W3199712979 hasLocation W31997129791 @default.
- W3199712979 hasOpenAccess W3199712979 @default.
- W3199712979 hasPrimaryLocation W31997129791 @default.
- W3199712979 hasRelatedWork W2126887587 @default.
- W3199712979 hasRelatedWork W2731899572 @default.
- W3199712979 hasRelatedWork W2939353110 @default.
- W3199712979 hasRelatedWork W3009238340 @default.
- W3199712979 hasRelatedWork W3215138031 @default.
- W3199712979 hasRelatedWork W4285351355 @default.
- W3199712979 hasRelatedWork W4312962853 @default.
- W3199712979 hasRelatedWork W4321369474 @default.
- W3199712979 hasRelatedWork W4327774331 @default.
- W3199712979 hasRelatedWork W4360585206 @default.
- W3199712979 isParatext "false" @default.
- W3199712979 isRetracted "false" @default.
- W3199712979 magId "3199712979" @default.
- W3199712979 workType "article" @default.