Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199716165> ?p ?o ?g. }
- W3199716165 endingPage "848" @default.
- W3199716165 startingPage "823" @default.
- W3199716165 abstract "In this paper we use the dominant dimension with respect to a tilting module to study the double centraliser property. We prove that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a quasi-hereditary algebra with a simple preserving duality and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper T> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=application/x-tex>T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a faithful tilting <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module, then <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has the double centralizer property with respect to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper T> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=application/x-tex>T</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This provides a simple and useful criterion which can be applied in many situations in algebraic Lie theory. We affirmatively answer a question of Mazorchuk and Stroppel by proving the existence of a unique minimal basic tilting module <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper T> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=application/x-tex>T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A equals upper E n d Subscript upper E n d Sub Subscript upper A Subscript left-parenthesis upper T right-parenthesis Baseline left-parenthesis upper T right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>=</mml:mo> <mml:mi>E</mml:mi> <mml:mi>n</mml:mi> <mml:msub> <mml:mi>d</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>E</mml:mi> <mml:mi>n</mml:mi> <mml:msub> <mml:mi>d</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>A=End_{End_A(T)}(T)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As an application, we establish a Schur-Weyl duality between the symplectic Schur algebra <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S Subscript upper K Superscript s y Baseline left-parenthesis m comma n right-parenthesis> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>K</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>s</mml:mi> <mml:mi>y</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy=false>(</mml:mo> <mml:mi>m</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>S_K^{sy}(m,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the Brauer algebra <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German upper B Subscript n Baseline left-parenthesis minus 2 m right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>B</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mi>m</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathfrak {B}_n(-2m)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on the space of dual partially harmonic tensors under certain condition." @default.
- W3199716165 created "2021-09-27" @default.
- W3199716165 creator A5010294310 @default.
- W3199716165 creator A5045858327 @default.
- W3199716165 date "2021-09-14" @default.
- W3199716165 modified "2023-10-16" @default.
- W3199716165 title "Tilting modules, dominant dimensions and Brauer-Schur-Weyl duality" @default.
- W3199716165 cites W1539812590 @default.
- W3199716165 cites W1564721750 @default.
- W3199716165 cites W1674711990 @default.
- W3199716165 cites W1966340943 @default.
- W3199716165 cites W1968273868 @default.
- W3199716165 cites W1968506759 @default.
- W3199716165 cites W1969432190 @default.
- W3199716165 cites W1973625804 @default.
- W3199716165 cites W1978644668 @default.
- W3199716165 cites W1979753948 @default.
- W3199716165 cites W1985366539 @default.
- W3199716165 cites W1989372642 @default.
- W3199716165 cites W1996321859 @default.
- W3199716165 cites W1999064940 @default.
- W3199716165 cites W2001327112 @default.
- W3199716165 cites W2002992505 @default.
- W3199716165 cites W2006415709 @default.
- W3199716165 cites W2009217866 @default.
- W3199716165 cites W2023487329 @default.
- W3199716165 cites W2029675974 @default.
- W3199716165 cites W2034372808 @default.
- W3199716165 cites W2035240682 @default.
- W3199716165 cites W2037182182 @default.
- W3199716165 cites W2038167763 @default.
- W3199716165 cites W2040956024 @default.
- W3199716165 cites W2059762848 @default.
- W3199716165 cites W2060789146 @default.
- W3199716165 cites W2064519242 @default.
- W3199716165 cites W2067396655 @default.
- W3199716165 cites W2067959344 @default.
- W3199716165 cites W2069732727 @default.
- W3199716165 cites W2084061070 @default.
- W3199716165 cites W2086681482 @default.
- W3199716165 cites W2087875806 @default.
- W3199716165 cites W2094870540 @default.
- W3199716165 cites W2095195370 @default.
- W3199716165 cites W2103342074 @default.
- W3199716165 cites W2158296054 @default.
- W3199716165 cites W2499376014 @default.
- W3199716165 cites W2591927884 @default.
- W3199716165 cites W2776184467 @default.
- W3199716165 cites W2953354501 @default.
- W3199716165 cites W2963928376 @default.
- W3199716165 cites W3106481115 @default.
- W3199716165 cites W4206574494 @default.
- W3199716165 cites W4210444050 @default.
- W3199716165 cites W4213138289 @default.
- W3199716165 cites W4233402794 @default.
- W3199716165 cites W4233691994 @default.
- W3199716165 cites W4242197845 @default.
- W3199716165 cites W4244911652 @default.
- W3199716165 cites W4247300293 @default.
- W3199716165 cites W4250794163 @default.
- W3199716165 cites W4255934170 @default.
- W3199716165 cites W4256429362 @default.
- W3199716165 doi "https://doi.org/10.1090/btran/84" @default.
- W3199716165 hasPublicationYear "2021" @default.
- W3199716165 type Work @default.
- W3199716165 sameAs 3199716165 @default.
- W3199716165 citedByCount "0" @default.
- W3199716165 crossrefType "journal-article" @default.
- W3199716165 hasAuthorship W3199716165A5010294310 @default.
- W3199716165 hasAuthorship W3199716165A5045858327 @default.
- W3199716165 hasBestOaLocation W31997161651 @default.
- W3199716165 hasConcept C11413529 @default.
- W3199716165 hasConcept C154945302 @default.
- W3199716165 hasConcept C184337299 @default.
- W3199716165 hasConcept C18903297 @default.
- W3199716165 hasConcept C199360897 @default.
- W3199716165 hasConcept C2776321320 @default.
- W3199716165 hasConcept C2777299769 @default.
- W3199716165 hasConcept C33923547 @default.
- W3199716165 hasConcept C41008148 @default.
- W3199716165 hasConcept C86803240 @default.
- W3199716165 hasConceptScore W3199716165C11413529 @default.
- W3199716165 hasConceptScore W3199716165C154945302 @default.
- W3199716165 hasConceptScore W3199716165C184337299 @default.
- W3199716165 hasConceptScore W3199716165C18903297 @default.
- W3199716165 hasConceptScore W3199716165C199360897 @default.
- W3199716165 hasConceptScore W3199716165C2776321320 @default.
- W3199716165 hasConceptScore W3199716165C2777299769 @default.
- W3199716165 hasConceptScore W3199716165C33923547 @default.
- W3199716165 hasConceptScore W3199716165C41008148 @default.
- W3199716165 hasConceptScore W3199716165C86803240 @default.
- W3199716165 hasIssue "26" @default.
- W3199716165 hasLocation W31997161651 @default.
- W3199716165 hasLocation W31997161652 @default.
- W3199716165 hasOpenAccess W3199716165 @default.
- W3199716165 hasPrimaryLocation W31997161651 @default.
- W3199716165 hasRelatedWork W151193258 @default.
- W3199716165 hasRelatedWork W1529400504 @default.