Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199720170> ?p ?o ?g. }
- W3199720170 abstract "Abstract Mass spectrometry imaging (MSI) is an emerging technology that holds potential for improving, biomarker discovery, metabolomics research, pharmaceutical applications and clinical diagnosis. Despite many solutions being developed, the large data size and high dimensional nature of MSI, especially 3D datasets, still pose computational and memory complexities that hinder accurate identification of biologically relevant molecular patterns. Moreover, the subjectivity in the selection of parameters for conventional pre-processing approaches can lead to bias. Therefore, we assess if a probabilistic generative model based on a fully connected variational autoencoder can be used for unsupervised analysis and peak learning of MSI data to uncover hidden structures. The resulting msiPL method learns and visualizes the underlying non-linear spectral manifold, revealing biologically relevant clusters of tissue anatomy in a mouse kidney and tumor heterogeneity in human prostatectomy tissue, colorectal carcinoma, and glioblastoma mouse model, with identification of underlying m/z peaks. The method is applied for the analysis of MSI datasets ranging from 3.3 to 78.9 GB, without prior pre-processing and peak picking, and acquired using different mass spectrometers at different centers." @default.
- W3199720170 created "2021-09-27" @default.
- W3199720170 creator A5012857071 @default.
- W3199720170 creator A5015247761 @default.
- W3199720170 creator A5021319515 @default.
- W3199720170 creator A5046979141 @default.
- W3199720170 creator A5057679504 @default.
- W3199720170 creator A5076061881 @default.
- W3199720170 creator A5077410286 @default.
- W3199720170 creator A5088170317 @default.
- W3199720170 creator A5091681491 @default.
- W3199720170 date "2021-09-20" @default.
- W3199720170 modified "2023-10-01" @default.
- W3199720170 title "Peak learning of mass spectrometry imaging data using artificial neural networks" @default.
- W3199720170 cites W111509594 @default.
- W3199720170 cites W1608430727 @default.
- W3199720170 cites W1965011257 @default.
- W3199720170 cites W1977341480 @default.
- W3199720170 cites W1992505804 @default.
- W3199720170 cites W2006115709 @default.
- W3199720170 cites W2006891306 @default.
- W3199720170 cites W2009385987 @default.
- W3199720170 cites W2032756564 @default.
- W3199720170 cites W2037036397 @default.
- W3199720170 cites W2038856295 @default.
- W3199720170 cites W2039946906 @default.
- W3199720170 cites W2041823554 @default.
- W3199720170 cites W2045054418 @default.
- W3199720170 cites W2047594345 @default.
- W3199720170 cites W2069701412 @default.
- W3199720170 cites W2085903081 @default.
- W3199720170 cites W2094862862 @default.
- W3199720170 cites W2097749765 @default.
- W3199720170 cites W2121668219 @default.
- W3199720170 cites W2129778189 @default.
- W3199720170 cites W2165681080 @default.
- W3199720170 cites W2168175751 @default.
- W3199720170 cites W2280196157 @default.
- W3199720170 cites W2332972329 @default.
- W3199720170 cites W2334176447 @default.
- W3199720170 cites W2467197661 @default.
- W3199720170 cites W2530976429 @default.
- W3199720170 cites W2550848904 @default.
- W3199720170 cites W2560186990 @default.
- W3199720170 cites W2588704521 @default.
- W3199720170 cites W2611214388 @default.
- W3199720170 cites W2768365920 @default.
- W3199720170 cites W2789073241 @default.
- W3199720170 cites W2803760365 @default.
- W3199720170 cites W2888486111 @default.
- W3199720170 cites W2889326414 @default.
- W3199720170 cites W2901359281 @default.
- W3199720170 cites W2902652978 @default.
- W3199720170 cites W2913335599 @default.
- W3199720170 cites W2918946816 @default.
- W3199720170 cites W2949272108 @default.
- W3199720170 cites W2953801846 @default.
- W3199720170 cites W2954182729 @default.
- W3199720170 cites W2979874034 @default.
- W3199720170 cites W2984472267 @default.
- W3199720170 cites W2991547182 @default.
- W3199720170 cites W3017343831 @default.
- W3199720170 cites W3118298038 @default.
- W3199720170 cites W2519438632 @default.
- W3199720170 doi "https://doi.org/10.1038/s41467-021-25744-8" @default.
- W3199720170 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8452737" @default.
- W3199720170 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34545087" @default.
- W3199720170 hasPublicationYear "2021" @default.
- W3199720170 type Work @default.
- W3199720170 sameAs 3199720170 @default.
- W3199720170 citedByCount "34" @default.
- W3199720170 countsByYear W31997201702022 @default.
- W3199720170 countsByYear W31997201702023 @default.
- W3199720170 crossrefType "journal-article" @default.
- W3199720170 hasAuthorship W3199720170A5012857071 @default.
- W3199720170 hasAuthorship W3199720170A5015247761 @default.
- W3199720170 hasAuthorship W3199720170A5021319515 @default.
- W3199720170 hasAuthorship W3199720170A5046979141 @default.
- W3199720170 hasAuthorship W3199720170A5057679504 @default.
- W3199720170 hasAuthorship W3199720170A5076061881 @default.
- W3199720170 hasAuthorship W3199720170A5077410286 @default.
- W3199720170 hasAuthorship W3199720170A5088170317 @default.
- W3199720170 hasAuthorship W3199720170A5091681491 @default.
- W3199720170 hasBestOaLocation W31997201701 @default.
- W3199720170 hasConcept C101738243 @default.
- W3199720170 hasConcept C104317684 @default.
- W3199720170 hasConcept C108583219 @default.
- W3199720170 hasConcept C116834253 @default.
- W3199720170 hasConcept C119857082 @default.
- W3199720170 hasConcept C124535831 @default.
- W3199720170 hasConcept C153180895 @default.
- W3199720170 hasConcept C154945302 @default.
- W3199720170 hasConcept C162356407 @default.
- W3199720170 hasConcept C167966045 @default.
- W3199720170 hasConcept C185592680 @default.
- W3199720170 hasConcept C24066741 @default.
- W3199720170 hasConcept C39890363 @default.
- W3199720170 hasConcept C41008148 @default.
- W3199720170 hasConcept C43617362 @default.
- W3199720170 hasConcept C46111723 @default.