Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199751566> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3199751566 abstract "Data mining is about solving problems by analyzing data that present in databases. Supervised and unsupervised data classification (clustering) are among the most important techniques in data mining. Regression analysis is the process of fitting a function (often linear) to the data to discover how one or more variables vary as a function of another. The aim of clusterwise regression is to combine both of these techniques, to discover trends within data, when more than one trend is likely to exist. Clusterwise regression has applications for instance in market segmentation, where it allows one to gather information on customer behaviors for several unknown groups of customers. There exist different methods for solving clusterwise linear regression problems. In spite of that, the development of efficient algorithms for solving clusterwise linear regression problems is still an important research topic. In this thesis our aim is to develop new algorithms for solving clusterwise linear regression problems in large data sets based on incremental and nonsmooth optimization approaches. Three new methods for solving clusterwise linear regression problems are developed and numerically tested on publicly available data sets for regression analysis. The first method is a new algorithm for solving the clusterwise linear regression problems based on their nonsmooth nonconvex formulation. This is an incremental algorithm. The second method is a nonsmooth optimization algorithm for solving clusterwise linear regression problems. Nonsmooth optimization techniques are proposed to use instead of the Sp¨ath algorithm to solve optimization problems at each iteration of the incremental algorithm. The discrete gradient method is used to solve nonsmooth optimization problems at each iteration of the incremental algorithm. This approach allows one to reduce the CPU time and the number of regression problems solved in comparison with the first incremental algorithm. The third algorithm is an algorithm based on an incremental approach and on the smoothing techniques for solving clusterwise linear regression problems. The use of smoothing techniques allows one to apply powerful methods of smooth nonlinear programming to solve clusterwise linear regression problems. Numerical results are presented for all three algorithms using small to large data sets. The new algorithms are also compared with multi-start Sp¨ath algorithm for clusterwise linear regression.%%%%Doctor of Philosophy" @default.
- W3199751566 created "2021-09-27" @default.
- W3199751566 creator A5080029511 @default.
- W3199751566 date "2013-01-01" @default.
- W3199751566 modified "2023-09-23" @default.
- W3199751566 title "Nonsmooth optimization algorithms for clusterwise linear regression" @default.
- W3199751566 hasPublicationYear "2013" @default.
- W3199751566 type Work @default.
- W3199751566 sameAs 3199751566 @default.
- W3199751566 citedByCount "0" @default.
- W3199751566 crossrefType "journal-article" @default.
- W3199751566 hasAuthorship W3199751566A5080029511 @default.
- W3199751566 hasConcept C11413529 @default.
- W3199751566 hasConcept C119857082 @default.
- W3199751566 hasConcept C124101348 @default.
- W3199751566 hasConcept C126255220 @default.
- W3199751566 hasConcept C14036430 @default.
- W3199751566 hasConcept C152877465 @default.
- W3199751566 hasConcept C33923547 @default.
- W3199751566 hasConcept C41008148 @default.
- W3199751566 hasConcept C41045048 @default.
- W3199751566 hasConcept C48921125 @default.
- W3199751566 hasConcept C73555534 @default.
- W3199751566 hasConcept C78458016 @default.
- W3199751566 hasConcept C86803240 @default.
- W3199751566 hasConceptScore W3199751566C11413529 @default.
- W3199751566 hasConceptScore W3199751566C119857082 @default.
- W3199751566 hasConceptScore W3199751566C124101348 @default.
- W3199751566 hasConceptScore W3199751566C126255220 @default.
- W3199751566 hasConceptScore W3199751566C14036430 @default.
- W3199751566 hasConceptScore W3199751566C152877465 @default.
- W3199751566 hasConceptScore W3199751566C33923547 @default.
- W3199751566 hasConceptScore W3199751566C41008148 @default.
- W3199751566 hasConceptScore W3199751566C41045048 @default.
- W3199751566 hasConceptScore W3199751566C48921125 @default.
- W3199751566 hasConceptScore W3199751566C73555534 @default.
- W3199751566 hasConceptScore W3199751566C78458016 @default.
- W3199751566 hasConceptScore W3199751566C86803240 @default.
- W3199751566 hasLocation W31997515661 @default.
- W3199751566 hasOpenAccess W3199751566 @default.
- W3199751566 hasPrimaryLocation W31997515661 @default.
- W3199751566 hasRelatedWork W118332832 @default.
- W3199751566 hasRelatedWork W128121717 @default.
- W3199751566 hasRelatedWork W1480168147 @default.
- W3199751566 hasRelatedWork W1857560888 @default.
- W3199751566 hasRelatedWork W2181698694 @default.
- W3199751566 hasRelatedWork W2185358546 @default.
- W3199751566 hasRelatedWork W2476601642 @default.
- W3199751566 hasRelatedWork W2524816779 @default.
- W3199751566 hasRelatedWork W275087039 @default.
- W3199751566 hasRelatedWork W2890828651 @default.
- W3199751566 hasRelatedWork W2892674788 @default.
- W3199751566 hasRelatedWork W2917864543 @default.
- W3199751566 hasRelatedWork W2973534585 @default.
- W3199751566 hasRelatedWork W2987622167 @default.
- W3199751566 hasRelatedWork W2991237725 @default.
- W3199751566 hasRelatedWork W3034985331 @default.
- W3199751566 hasRelatedWork W3041932925 @default.
- W3199751566 hasRelatedWork W3122024178 @default.
- W3199751566 hasRelatedWork W3149903562 @default.
- W3199751566 hasRelatedWork W168399678 @default.
- W3199751566 isParatext "false" @default.
- W3199751566 isRetracted "false" @default.
- W3199751566 magId "3199751566" @default.
- W3199751566 workType "article" @default.