Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199773854> ?p ?o ?g. }
- W3199773854 endingPage "112009" @default.
- W3199773854 startingPage "112009" @default.
- W3199773854 abstract "In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering method to define joint control regions is an effective approach to address severe regional air pollution. However, current cluster analysis research on the determination of joint control areas relies on the Pearson correlation coefficient as a similarity measure. Due to nonlinearity and outliers in air pollution data, the correlation coefficient cannot accurately reveal the similarity in air quality between different cities. To bridge this gap, we proposed a method to delineate spatial patterns of PM2.5 pollution and regional boundaries of polluted areas using the frequent itemset clustering approach. The frequent itemsets between cities were first mined, and the support values were employed as interestingness metrics to describe the significance of similar variation patterns between cities. Then, the hierarchical clustering method was applied to identify appropriate areas for joint pollution control. The proposed clustering algorithm exhibits the advantages of not requiring model assumptions and a robustness to the outliers, which is a cost-effective approach to define joint control regions. By analysing urban PM2.5 pollution in China from 2015 to 2018, we obtained results demonstrating that the frequent itemset clustering approach can efficiently determine pollution patterns and can effectively identify regional divisions. The clustering approach could facilitate a greater understanding of PM2.5 spatiotemporal aggregation to design joint control measures among areas. The findings and methodology of this research have important implications for the formulation of clean air policies in China." @default.
- W3199773854 created "2021-09-27" @default.
- W3199773854 creator A5037128911 @default.
- W3199773854 creator A5085033536 @default.
- W3199773854 date "2022-03-01" @default.
- W3199773854 modified "2023-10-18" @default.
- W3199773854 title "Cluster analysis of PM2.5 pollution in China using the frequent itemset clustering approach" @default.
- W3199773854 cites W1517984787 @default.
- W3199773854 cites W1973749534 @default.
- W3199773854 cites W1985621115 @default.
- W3199773854 cites W1991416973 @default.
- W3199773854 cites W1997021349 @default.
- W3199773854 cites W2016361990 @default.
- W3199773854 cites W2023307338 @default.
- W3199773854 cites W2035201267 @default.
- W3199773854 cites W2038700811 @default.
- W3199773854 cites W2053261426 @default.
- W3199773854 cites W2054274648 @default.
- W3199773854 cites W2088780245 @default.
- W3199773854 cites W2107005225 @default.
- W3199773854 cites W2115169659 @default.
- W3199773854 cites W2115482638 @default.
- W3199773854 cites W2144487694 @default.
- W3199773854 cites W2158703410 @default.
- W3199773854 cites W2277647566 @default.
- W3199773854 cites W2283407227 @default.
- W3199773854 cites W2343188872 @default.
- W3199773854 cites W2522547941 @default.
- W3199773854 cites W2560184186 @default.
- W3199773854 cites W2581042542 @default.
- W3199773854 cites W2600895752 @default.
- W3199773854 cites W2621188713 @default.
- W3199773854 cites W2739527410 @default.
- W3199773854 cites W2754790542 @default.
- W3199773854 cites W2768687972 @default.
- W3199773854 cites W2779166904 @default.
- W3199773854 cites W2783642261 @default.
- W3199773854 cites W2791444549 @default.
- W3199773854 cites W2793762636 @default.
- W3199773854 cites W2804638557 @default.
- W3199773854 cites W2805416034 @default.
- W3199773854 cites W2883095117 @default.
- W3199773854 cites W2886045631 @default.
- W3199773854 cites W2897378724 @default.
- W3199773854 cites W2921254207 @default.
- W3199773854 cites W2951747536 @default.
- W3199773854 cites W2969284534 @default.
- W3199773854 cites W2974202804 @default.
- W3199773854 cites W2984317624 @default.
- W3199773854 cites W3010553270 @default.
- W3199773854 cites W3021622675 @default.
- W3199773854 cites W3045275280 @default.
- W3199773854 cites W3097314719 @default.
- W3199773854 cites W3115265304 @default.
- W3199773854 cites W3185877013 @default.
- W3199773854 cites W590735017 @default.
- W3199773854 cites W853829732 @default.
- W3199773854 doi "https://doi.org/10.1016/j.envres.2021.112009" @default.
- W3199773854 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34534521" @default.
- W3199773854 hasPublicationYear "2022" @default.
- W3199773854 type Work @default.
- W3199773854 sameAs 3199773854 @default.
- W3199773854 citedByCount "4" @default.
- W3199773854 countsByYear W31997738542022 @default.
- W3199773854 countsByYear W31997738542023 @default.
- W3199773854 crossrefType "journal-article" @default.
- W3199773854 hasAuthorship W3199773854A5037128911 @default.
- W3199773854 hasAuthorship W3199773854A5085033536 @default.
- W3199773854 hasConcept C103278499 @default.
- W3199773854 hasConcept C104317684 @default.
- W3199773854 hasConcept C115961682 @default.
- W3199773854 hasConcept C119857082 @default.
- W3199773854 hasConcept C124101348 @default.
- W3199773854 hasConcept C154945302 @default.
- W3199773854 hasConcept C178790620 @default.
- W3199773854 hasConcept C185592680 @default.
- W3199773854 hasConcept C18903297 @default.
- W3199773854 hasConcept C39432304 @default.
- W3199773854 hasConcept C41008148 @default.
- W3199773854 hasConcept C521259446 @default.
- W3199773854 hasConcept C55493867 @default.
- W3199773854 hasConcept C559116025 @default.
- W3199773854 hasConcept C63479239 @default.
- W3199773854 hasConcept C73555534 @default.
- W3199773854 hasConcept C79337645 @default.
- W3199773854 hasConcept C86803240 @default.
- W3199773854 hasConcept C92835128 @default.
- W3199773854 hasConceptScore W3199773854C103278499 @default.
- W3199773854 hasConceptScore W3199773854C104317684 @default.
- W3199773854 hasConceptScore W3199773854C115961682 @default.
- W3199773854 hasConceptScore W3199773854C119857082 @default.
- W3199773854 hasConceptScore W3199773854C124101348 @default.
- W3199773854 hasConceptScore W3199773854C154945302 @default.
- W3199773854 hasConceptScore W3199773854C178790620 @default.
- W3199773854 hasConceptScore W3199773854C185592680 @default.
- W3199773854 hasConceptScore W3199773854C18903297 @default.
- W3199773854 hasConceptScore W3199773854C39432304 @default.
- W3199773854 hasConceptScore W3199773854C41008148 @default.