Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199808110> ?p ?o ?g. }
- W3199808110 endingPage "128371" @default.
- W3199808110 startingPage "128359" @default.
- W3199808110 abstract "Traffic accidents on highways are a leading cause of death despite the development of traffic safety measures. The burden of casualties and damage caused by road accidents is very high for developing countries. Many factors are associated with traffic accidents, some of which are more significant than others in determining the severity of accidents. Data mining techniques can help in predicting influential factors related to crash severity. In this study, significant factors that are strongly correlated with the accident severity on highways are identified by Random Forest. Top features affecting accidental severity include distance, temperature, wind_Chill, humidity, visibility, and wind direction. This study presents an ensemble of machine learning and deep learning models by combining Random Forest and Convolutional Neural Network called RFCNN for the prediction of road accident severity. The performance of the proposed approach is compared with several base learner classifiers. The data used in the analysis include accident records of the USA from February 2016 to June 2020. Obtained results demonstrate that the RFCNN enhanced the decision-making process and outperformed other models with 0.991 accuracy, 0.974 precision, 0.986 recall, and 0.980 F-score using the 20 most significant features in predicting the severity of accidents." @default.
- W3199808110 created "2021-09-27" @default.
- W3199808110 creator A5009400840 @default.
- W3199808110 creator A5016787043 @default.
- W3199808110 creator A5018403922 @default.
- W3199808110 creator A5039941573 @default.
- W3199808110 creator A5056646889 @default.
- W3199808110 creator A5083313870 @default.
- W3199808110 creator A5088492029 @default.
- W3199808110 date "2021-01-01" @default.
- W3199808110 modified "2023-10-12" @default.
- W3199808110 title "RFCNN: Traffic Accident Severity Prediction Based on Decision Level Fusion of Machine and Deep Learning Model" @default.
- W3199808110 cites W114517082 @default.
- W3199808110 cites W1678356000 @default.
- W3199808110 cites W1987193935 @default.
- W3199808110 cites W1988790447 @default.
- W3199808110 cites W1991194841 @default.
- W3199808110 cites W1993899302 @default.
- W3199808110 cites W2008909284 @default.
- W3199808110 cites W2014950479 @default.
- W3199808110 cites W2023131190 @default.
- W3199808110 cites W2056132907 @default.
- W3199808110 cites W2062786991 @default.
- W3199808110 cites W2063763346 @default.
- W3199808110 cites W2069040401 @default.
- W3199808110 cites W2069103009 @default.
- W3199808110 cites W2085228654 @default.
- W3199808110 cites W2088794999 @default.
- W3199808110 cites W2090563475 @default.
- W3199808110 cites W2092392399 @default.
- W3199808110 cites W2159002562 @default.
- W3199808110 cites W2161588597 @default.
- W3199808110 cites W2164594255 @default.
- W3199808110 cites W2216946510 @default.
- W3199808110 cites W2279048782 @default.
- W3199808110 cites W2505198155 @default.
- W3199808110 cites W2531956315 @default.
- W3199808110 cites W2563505101 @default.
- W3199808110 cites W2567881713 @default.
- W3199808110 cites W2621409665 @default.
- W3199808110 cites W2622893728 @default.
- W3199808110 cites W2760110535 @default.
- W3199808110 cites W2770810810 @default.
- W3199808110 cites W2790796382 @default.
- W3199808110 cites W2911964244 @default.
- W3199808110 cites W2945388018 @default.
- W3199808110 cites W2989490741 @default.
- W3199808110 cites W3002474999 @default.
- W3199808110 cites W3008021512 @default.
- W3199808110 cites W3025875705 @default.
- W3199808110 cites W3041424525 @default.
- W3199808110 cites W3041618143 @default.
- W3199808110 cites W3045081979 @default.
- W3199808110 cites W3080295236 @default.
- W3199808110 cites W3093859549 @default.
- W3199808110 cites W3134573010 @default.
- W3199808110 cites W3158882950 @default.
- W3199808110 cites W4212883601 @default.
- W3199808110 doi "https://doi.org/10.1109/access.2021.3112546" @default.
- W3199808110 hasPublicationYear "2021" @default.
- W3199808110 type Work @default.
- W3199808110 sameAs 3199808110 @default.
- W3199808110 citedByCount "15" @default.
- W3199808110 countsByYear W31998081102022 @default.
- W3199808110 countsByYear W31998081102023 @default.
- W3199808110 crossrefType "journal-article" @default.
- W3199808110 hasAuthorship W3199808110A5009400840 @default.
- W3199808110 hasAuthorship W3199808110A5016787043 @default.
- W3199808110 hasAuthorship W3199808110A5018403922 @default.
- W3199808110 hasAuthorship W3199808110A5039941573 @default.
- W3199808110 hasAuthorship W3199808110A5056646889 @default.
- W3199808110 hasAuthorship W3199808110A5083313870 @default.
- W3199808110 hasAuthorship W3199808110A5088492029 @default.
- W3199808110 hasBestOaLocation W31998081101 @default.
- W3199808110 hasConcept C108583219 @default.
- W3199808110 hasConcept C111472728 @default.
- W3199808110 hasConcept C119857082 @default.
- W3199808110 hasConcept C123403432 @default.
- W3199808110 hasConcept C138885662 @default.
- W3199808110 hasConcept C153294291 @default.
- W3199808110 hasConcept C154945302 @default.
- W3199808110 hasConcept C169258074 @default.
- W3199808110 hasConcept C183469790 @default.
- W3199808110 hasConcept C199360897 @default.
- W3199808110 hasConcept C205649164 @default.
- W3199808110 hasConcept C2780289543 @default.
- W3199808110 hasConcept C41008148 @default.
- W3199808110 hasConcept C45804977 @default.
- W3199808110 hasConcept C81363708 @default.
- W3199808110 hasConceptScore W3199808110C108583219 @default.
- W3199808110 hasConceptScore W3199808110C111472728 @default.
- W3199808110 hasConceptScore W3199808110C119857082 @default.
- W3199808110 hasConceptScore W3199808110C123403432 @default.
- W3199808110 hasConceptScore W3199808110C138885662 @default.
- W3199808110 hasConceptScore W3199808110C153294291 @default.
- W3199808110 hasConceptScore W3199808110C154945302 @default.
- W3199808110 hasConceptScore W3199808110C169258074 @default.
- W3199808110 hasConceptScore W3199808110C183469790 @default.