Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199842479> ?p ?o ?g. }
- W3199842479 endingPage "442" @default.
- W3199842479 startingPage "428" @default.
- W3199842479 abstract "This article proposes a robust end-to-end deep learning-induced fault recognition scheme by stacking multiple sparse-denoising autoencoders with a Softmax classifier, called stacked spare-denoising autoencoder (SSDAE)-Softmax, for the fault identification of complex industrial processes (CIPs). Specifically, sparse denoising autoencoder (SDAE) is established by integrating a sparse AE (SAE) with a denoising AE (DAE) for the low-dimensional but intrinsic feature representation of the CIP monitoring data (CIPMD) with possible noise contamination. SSDAE-Softmax is established by stacking multiple SDAEs with a layerwise pretraining procedure, and a Softmax classifier with a global fine-tuning strategy. Furthermore, SSDAE-Softmax hyperparameters are optimized by a relatively new global optimization algorithm, referred to as the state transition algorithm (STA). Benefiting from the deep learning-based feature representation scheme with the STA-based hyperparameter optimization, the underlying intrinsic characteristics of CIPMD can be learned automatically and adaptively for accurate fault identification. A numeric simulation system, the benchmark Tennessee Eastman process (TEP), and a real industrial process, that is, the continuous casting process (CCP) from a top steel plant of China, are used to validate the performance of the proposed method. Experimental results show that the proposed SSDAE-Softmax model can effectively identify various process faults, and has stronger robustness and adaptability against the noise interference in CIPMD for the process monitoring of CIPs." @default.
- W3199842479 created "2021-09-27" @default.
- W3199842479 creator A5001933400 @default.
- W3199842479 creator A5004572981 @default.
- W3199842479 creator A5018961622 @default.
- W3199842479 creator A5035923986 @default.
- W3199842479 creator A5052280298 @default.
- W3199842479 creator A5052757548 @default.
- W3199842479 creator A5058532271 @default.
- W3199842479 creator A5067558148 @default.
- W3199842479 creator A5068391079 @default.
- W3199842479 date "2023-01-01" @default.
- W3199842479 modified "2023-10-18" @default.
- W3199842479 title "Toward Robust Fault Identification of Complex Industrial Processes Using Stacked Sparse-Denoising Autoencoder With Softmax Classifier" @default.
- W3199842479 cites W1130732523 @default.
- W3199842479 cites W1648376981 @default.
- W3199842479 cites W1984672166 @default.
- W3199842479 cites W1997208277 @default.
- W3199842479 cites W2017597862 @default.
- W3199842479 cites W2017979853 @default.
- W3199842479 cites W2021040661 @default.
- W3199842479 cites W2025768430 @default.
- W3199842479 cites W2036172078 @default.
- W3199842479 cites W2057577134 @default.
- W3199842479 cites W2058139389 @default.
- W3199842479 cites W2396571449 @default.
- W3199842479 cites W2520775273 @default.
- W3199842479 cites W2531231238 @default.
- W3199842479 cites W2601590138 @default.
- W3199842479 cites W2612554669 @default.
- W3199842479 cites W2726291047 @default.
- W3199842479 cites W2757109865 @default.
- W3199842479 cites W2769355916 @default.
- W3199842479 cites W2771499866 @default.
- W3199842479 cites W2775523681 @default.
- W3199842479 cites W2791694051 @default.
- W3199842479 cites W2793062918 @default.
- W3199842479 cites W2794239758 @default.
- W3199842479 cites W2799289987 @default.
- W3199842479 cites W2803142415 @default.
- W3199842479 cites W2827159893 @default.
- W3199842479 cites W2884870203 @default.
- W3199842479 cites W2900507847 @default.
- W3199842479 cites W2919054368 @default.
- W3199842479 cites W2939985247 @default.
- W3199842479 cites W2942469196 @default.
- W3199842479 cites W2950549706 @default.
- W3199842479 cites W2951375073 @default.
- W3199842479 cites W2964049407 @default.
- W3199842479 cites W2965875348 @default.
- W3199842479 cites W2972034512 @default.
- W3199842479 cites W2984336431 @default.
- W3199842479 cites W3001599259 @default.
- W3199842479 cites W3005904504 @default.
- W3199842479 cites W3012522386 @default.
- W3199842479 cites W3049551288 @default.
- W3199842479 cites W3104129232 @default.
- W3199842479 cites W3119774586 @default.
- W3199842479 doi "https://doi.org/10.1109/tcyb.2021.3109618" @default.
- W3199842479 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34550897" @default.
- W3199842479 hasPublicationYear "2023" @default.
- W3199842479 type Work @default.
- W3199842479 sameAs 3199842479 @default.
- W3199842479 citedByCount "7" @default.
- W3199842479 countsByYear W31998424792022 @default.
- W3199842479 countsByYear W31998424792023 @default.
- W3199842479 crossrefType "journal-article" @default.
- W3199842479 hasAuthorship W3199842479A5001933400 @default.
- W3199842479 hasAuthorship W3199842479A5004572981 @default.
- W3199842479 hasAuthorship W3199842479A5018961622 @default.
- W3199842479 hasAuthorship W3199842479A5035923986 @default.
- W3199842479 hasAuthorship W3199842479A5052280298 @default.
- W3199842479 hasAuthorship W3199842479A5052757548 @default.
- W3199842479 hasAuthorship W3199842479A5058532271 @default.
- W3199842479 hasAuthorship W3199842479A5067558148 @default.
- W3199842479 hasAuthorship W3199842479A5068391079 @default.
- W3199842479 hasConcept C101738243 @default.
- W3199842479 hasConcept C104317684 @default.
- W3199842479 hasConcept C108583219 @default.
- W3199842479 hasConcept C119857082 @default.
- W3199842479 hasConcept C124066611 @default.
- W3199842479 hasConcept C152745839 @default.
- W3199842479 hasConcept C153180895 @default.
- W3199842479 hasConcept C154945302 @default.
- W3199842479 hasConcept C163294075 @default.
- W3199842479 hasConcept C172707124 @default.
- W3199842479 hasConcept C185592680 @default.
- W3199842479 hasConcept C188441871 @default.
- W3199842479 hasConcept C41008148 @default.
- W3199842479 hasConcept C55493867 @default.
- W3199842479 hasConcept C63479239 @default.
- W3199842479 hasConcept C95623464 @default.
- W3199842479 hasConceptScore W3199842479C101738243 @default.
- W3199842479 hasConceptScore W3199842479C104317684 @default.
- W3199842479 hasConceptScore W3199842479C108583219 @default.
- W3199842479 hasConceptScore W3199842479C119857082 @default.
- W3199842479 hasConceptScore W3199842479C124066611 @default.
- W3199842479 hasConceptScore W3199842479C152745839 @default.