Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199875470> ?p ?o ?g. }
- W3199875470 endingPage "128995" @default.
- W3199875470 startingPage "128988" @default.
- W3199875470 abstract "This study proposes a super-resolution (SR) method for terahertz time-domain spectroscopy (THz-TDS) images, combining a convolutional neural network (CNN) and a mathematical degradation model. The mathematical degradation model considers three possible factors affecting the quality of THz images: the blur kernel, noise, and down-sampler. Specifically, the blur kernel characterizes the continual change of image blur extent with the imaging distance. The designed CNN learns from the degradation model and then copes with the distance dependent image restoration problem based on the learned mapping between the low and high-resolution image pairs. The designed two-stage comparative experiment shows that the proposed method significantly improved the quality of the THz images. To be specific, our proposed method enhanced the resolution by a factor of 1.95 to 0.61 mm with respect to the diffraction limit. In addition, our method achieved the greatest improvement in terms of image quality, with an increase of 4.35 in PSNR and 0.10 in SSIM. We believe that our method could offer a satisfactory solution for THz-TDs image SR applications." @default.
- W3199875470 created "2021-09-27" @default.
- W3199875470 creator A5041470064 @default.
- W3199875470 creator A5070779003 @default.
- W3199875470 creator A5083282081 @default.
- W3199875470 date "2021-01-01" @default.
- W3199875470 modified "2023-10-15" @default.
- W3199875470 title "Mathematical Degradation Model Learning for Terahertz Image Super-Resolution" @default.
- W3199875470 cites W1536283017 @default.
- W3199875470 cites W1548432142 @default.
- W3199875470 cites W1985977725 @default.
- W3199875470 cites W1986474117 @default.
- W3199875470 cites W1987075379 @default.
- W3199875470 cites W1988845330 @default.
- W3199875470 cites W2004986322 @default.
- W3199875470 cites W2039288144 @default.
- W3199875470 cites W2061682736 @default.
- W3199875470 cites W2075287860 @default.
- W3199875470 cites W2089057133 @default.
- W3199875470 cites W2121927366 @default.
- W3199875470 cites W2126260173 @default.
- W3199875470 cites W2146782367 @default.
- W3199875470 cites W2155684415 @default.
- W3199875470 cites W2164546462 @default.
- W3199875470 cites W2181228925 @default.
- W3199875470 cites W2242218935 @default.
- W3199875470 cites W2301317970 @default.
- W3199875470 cites W2738803669 @default.
- W3199875470 cites W2741137940 @default.
- W3199875470 cites W2762502501 @default.
- W3199875470 cites W2810538423 @default.
- W3199875470 cites W2927145094 @default.
- W3199875470 cites W2945913531 @default.
- W3199875470 cites W2960681070 @default.
- W3199875470 cites W2963470893 @default.
- W3199875470 cites W2964277374 @default.
- W3199875470 cites W3003623279 @default.
- W3199875470 cites W3003882333 @default.
- W3199875470 cites W3041716045 @default.
- W3199875470 cites W3082410681 @default.
- W3199875470 cites W3101127840 @default.
- W3199875470 cites W3127725076 @default.
- W3199875470 cites W3133985008 @default.
- W3199875470 cites W54257720 @default.
- W3199875470 doi "https://doi.org/10.1109/access.2021.3113258" @default.
- W3199875470 hasPublicationYear "2021" @default.
- W3199875470 type Work @default.
- W3199875470 sameAs 3199875470 @default.
- W3199875470 citedByCount "4" @default.
- W3199875470 countsByYear W31998754702022 @default.
- W3199875470 countsByYear W31998754702023 @default.
- W3199875470 crossrefType "journal-article" @default.
- W3199875470 hasAuthorship W3199875470A5041470064 @default.
- W3199875470 hasAuthorship W3199875470A5070779003 @default.
- W3199875470 hasAuthorship W3199875470A5083282081 @default.
- W3199875470 hasBestOaLocation W31998754701 @default.
- W3199875470 hasConcept C106430172 @default.
- W3199875470 hasConcept C107816215 @default.
- W3199875470 hasConcept C114614502 @default.
- W3199875470 hasConcept C115961682 @default.
- W3199875470 hasConcept C120665830 @default.
- W3199875470 hasConcept C121332964 @default.
- W3199875470 hasConcept C138268822 @default.
- W3199875470 hasConcept C153180895 @default.
- W3199875470 hasConcept C154945302 @default.
- W3199875470 hasConcept C205372480 @default.
- W3199875470 hasConcept C2779679103 @default.
- W3199875470 hasConcept C31972630 @default.
- W3199875470 hasConcept C33923547 @default.
- W3199875470 hasConcept C41008148 @default.
- W3199875470 hasConcept C55020928 @default.
- W3199875470 hasConcept C74193536 @default.
- W3199875470 hasConcept C76155785 @default.
- W3199875470 hasConcept C81363708 @default.
- W3199875470 hasConcept C9417928 @default.
- W3199875470 hasConcept C99498987 @default.
- W3199875470 hasConceptScore W3199875470C106430172 @default.
- W3199875470 hasConceptScore W3199875470C107816215 @default.
- W3199875470 hasConceptScore W3199875470C114614502 @default.
- W3199875470 hasConceptScore W3199875470C115961682 @default.
- W3199875470 hasConceptScore W3199875470C120665830 @default.
- W3199875470 hasConceptScore W3199875470C121332964 @default.
- W3199875470 hasConceptScore W3199875470C138268822 @default.
- W3199875470 hasConceptScore W3199875470C153180895 @default.
- W3199875470 hasConceptScore W3199875470C154945302 @default.
- W3199875470 hasConceptScore W3199875470C205372480 @default.
- W3199875470 hasConceptScore W3199875470C2779679103 @default.
- W3199875470 hasConceptScore W3199875470C31972630 @default.
- W3199875470 hasConceptScore W3199875470C33923547 @default.
- W3199875470 hasConceptScore W3199875470C41008148 @default.
- W3199875470 hasConceptScore W3199875470C55020928 @default.
- W3199875470 hasConceptScore W3199875470C74193536 @default.
- W3199875470 hasConceptScore W3199875470C76155785 @default.
- W3199875470 hasConceptScore W3199875470C81363708 @default.
- W3199875470 hasConceptScore W3199875470C9417928 @default.
- W3199875470 hasConceptScore W3199875470C99498987 @default.
- W3199875470 hasFunder F4320337111 @default.
- W3199875470 hasLocation W31998754701 @default.