Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199880863> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3199880863 endingPage "0" @default.
- W3199880863 startingPage "0" @default.
- W3199880863 abstract "<p style='text-indent:20px;'>We associate to a perturbation <inline-formula><tex-math id=M1>begin{document}$ (f_t) $end{document}</tex-math></inline-formula> of a (stably mixing) piecewise expanding unimodal map <inline-formula><tex-math id=M2>begin{document}$ f_0 $end{document}</tex-math></inline-formula> a two-variable fractional susceptibility function <inline-formula><tex-math id=M3>begin{document}$ Psi_phi(eta, z) $end{document}</tex-math></inline-formula>, depending also on a bounded observable <inline-formula><tex-math id=M4>begin{document}$ phi $end{document}</tex-math></inline-formula>. For fixed <inline-formula><tex-math id=M5>begin{document}$ eta in (0,1) $end{document}</tex-math></inline-formula>, we show that the function <inline-formula><tex-math id=M6>begin{document}$ Psi_phi(eta, z) $end{document}</tex-math></inline-formula> is holomorphic in a disc <inline-formula><tex-math id=M7>begin{document}$ D_etasubset mathbb{C} $end{document}</tex-math></inline-formula> centered at zero of radius <inline-formula><tex-math id=M8>begin{document}$ >1 $end{document}</tex-math></inline-formula>, and that <inline-formula><tex-math id=M9>begin{document}$ Psi_phi(eta, 1) $end{document}</tex-math></inline-formula> is the Marchaud fractional derivative of order <inline-formula><tex-math id=M10>begin{document}$ eta $end{document}</tex-math></inline-formula> of the function <inline-formula><tex-math id=M11>begin{document}$ tmapsto mathcal{R}_phi(t): = int phi(x), dmu_t $end{document}</tex-math></inline-formula>, at <inline-formula><tex-math id=M12>begin{document}$ t = 0 $end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=M13>begin{document}$ mu_t $end{document}</tex-math></inline-formula> is the unique absolutely continuous invariant probability measure of <inline-formula><tex-math id=M14>begin{document}$ f_t $end{document}</tex-math></inline-formula>. In addition, we show that <inline-formula><tex-math id=M15>begin{document}$ Psi_phi(eta, z) $end{document}</tex-math></inline-formula> admits a holomorphic extension to the domain <inline-formula><tex-math id=M16>begin{document}$ {, (eta, z) in mathbb{C}^2mid 0<Re eta <1, , z in D_eta ,} $end{document}</tex-math></inline-formula>. Finally, if the perturbation <inline-formula><tex-math id=M17>begin{document}$ (f_t) $end{document}</tex-math></inline-formula> is horizontal, we prove that <inline-formula><tex-math id=M18>begin{document}$ lim_{eta in (0,1), eta to 1}Psi_phi(eta, 1) = partial_t mathcal{R}_phi(t)|_{t = 0} $end{document}</tex-math></inline-formula>.</p>" @default.
- W3199880863 created "2021-09-27" @default.
- W3199880863 creator A5020702278 @default.
- W3199880863 creator A5057055355 @default.
- W3199880863 creator A5057094509 @default.
- W3199880863 creator A5086209509 @default.
- W3199880863 date "2021-01-01" @default.
- W3199880863 modified "2023-09-27" @default.
- W3199880863 title "On the fractional susceptibility function of piecewise expanding maps" @default.
- W3199880863 cites W1530034100 @default.
- W3199880863 cites W1843185825 @default.
- W3199880863 cites W1964464830 @default.
- W3199880863 cites W1966272729 @default.
- W3199880863 cites W196973002 @default.
- W3199880863 cites W1991039194 @default.
- W3199880863 cites W2005509797 @default.
- W3199880863 cites W2012838519 @default.
- W3199880863 cites W2016718875 @default.
- W3199880863 cites W2020555549 @default.
- W3199880863 cites W2024907874 @default.
- W3199880863 cites W2024913569 @default.
- W3199880863 cites W2033041133 @default.
- W3199880863 cites W2047679901 @default.
- W3199880863 cites W2063775788 @default.
- W3199880863 cites W2064365640 @default.
- W3199880863 cites W2076602648 @default.
- W3199880863 cites W2131856549 @default.
- W3199880863 cites W2132469025 @default.
- W3199880863 cites W2150399218 @default.
- W3199880863 cites W2162432583 @default.
- W3199880863 cites W222993076 @default.
- W3199880863 cites W2327447718 @default.
- W3199880863 cites W2471933635 @default.
- W3199880863 cites W2766116392 @default.
- W3199880863 cites W2804080994 @default.
- W3199880863 cites W2963862815 @default.
- W3199880863 cites W3047569049 @default.
- W3199880863 cites W3103415748 @default.
- W3199880863 cites W3105484182 @default.
- W3199880863 cites W3105503461 @default.
- W3199880863 cites W4230374750 @default.
- W3199880863 cites W4239411278 @default.
- W3199880863 cites W4247722256 @default.
- W3199880863 cites W4249779810 @default.
- W3199880863 doi "https://doi.org/10.3934/dcds.2021133" @default.
- W3199880863 hasPublicationYear "2021" @default.
- W3199880863 type Work @default.
- W3199880863 sameAs 3199880863 @default.
- W3199880863 citedByCount "0" @default.
- W3199880863 crossrefType "journal-article" @default.
- W3199880863 hasAuthorship W3199880863A5020702278 @default.
- W3199880863 hasAuthorship W3199880863A5057055355 @default.
- W3199880863 hasAuthorship W3199880863A5057094509 @default.
- W3199880863 hasAuthorship W3199880863A5086209509 @default.
- W3199880863 hasBestOaLocation W31998808631 @default.
- W3199880863 hasConcept C114614502 @default.
- W3199880863 hasConcept C33923547 @default.
- W3199880863 hasConceptScore W3199880863C114614502 @default.
- W3199880863 hasConceptScore W3199880863C33923547 @default.
- W3199880863 hasIssue "0" @default.
- W3199880863 hasLocation W31998808631 @default.
- W3199880863 hasLocation W31998808632 @default.
- W3199880863 hasLocation W31998808633 @default.
- W3199880863 hasLocation W31998808634 @default.
- W3199880863 hasOpenAccess W3199880863 @default.
- W3199880863 hasPrimaryLocation W31998808631 @default.
- W3199880863 hasRelatedWork W1587224694 @default.
- W3199880863 hasRelatedWork W1978042415 @default.
- W3199880863 hasRelatedWork W1979597421 @default.
- W3199880863 hasRelatedWork W2007980826 @default.
- W3199880863 hasRelatedWork W2061531152 @default.
- W3199880863 hasRelatedWork W2077600819 @default.
- W3199880863 hasRelatedWork W2911598644 @default.
- W3199880863 hasRelatedWork W3002753104 @default.
- W3199880863 hasRelatedWork W4225152035 @default.
- W3199880863 hasRelatedWork W4245490552 @default.
- W3199880863 hasVolume "0" @default.
- W3199880863 isParatext "false" @default.
- W3199880863 isRetracted "false" @default.
- W3199880863 magId "3199880863" @default.
- W3199880863 workType "article" @default.