Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199901183> ?p ?o ?g. }
- W3199901183 abstract "Abstract Background Observational studies are increasingly being used to provide supplementary evidence in addition to Randomized Control Trials (RCTs) because they provide a scale and diversity of participants and outcomes that would be infeasible in an RCT. Additionally, they more closely reflect the settings in which the studied interventions will be applied in the future. Well-established propensity-score-based methods exist to overcome the challenges of working with observational data to estimate causal effects. These methods also provide quality assurance diagnostics to evaluate the degree to which bias has been removed and the estimates can be trusted. In large medical datasets it is common to find the same underlying health condition being treated with a variety of distinct drugs or drug combinations. Conventional methods require a manual iterative workflow, making them scale poorly to studies with many intervention arms. In such situations, automated causal inference methods that are compatible with traditional propensity-score-based workflows are highly desirable. Methods We introduce an automated causal inference method BCAUS, that features a deep-neural-network-based propensity model that is trained with a loss which penalizes both the incorrect prediction of the assigned treatment as well as the degree of imbalance between the inverse probability weighted covariates. The network is trained end-to-end by dynamically adjusting the loss term for each training batch such that the relative contributions from the two loss components are held fixed. Trained BCAUS models can be used in conjunction with traditional propensity-score-based methods to estimate causal treatment effects. Results We tested BCAUS on the semi-synthetic Infant Health & Development Program dataset with a single intervention arm, and a real-world observational study of diabetes interventions with over 100,000 individuals spread across more than a hundred intervention arms. When compared against other recently proposed automated causal inference methods, BCAUS had competitive accuracy for estimating synthetic treatment effects and provided highly concordant estimates on the real-world dataset but was an order-of-magnitude faster. Conclusions BCAUS is directly compatible with trusted protocols to estimate treatment effects and diagnose the quality of those estimates, while making the established approaches automatically scalable to an arbitrary number of simultaneous intervention arms without any need for manual iteration." @default.
- W3199901183 created "2021-09-27" @default.
- W3199901183 creator A5052719967 @default.
- W3199901183 creator A5070732816 @default.
- W3199901183 creator A5080060046 @default.
- W3199901183 date "2021-09-20" @default.
- W3199901183 modified "2023-10-17" @default.
- W3199901183 title "Minimizing bias in massive multi-arm observational studies with BCAUS: balancing covariates automatically using supervision" @default.
- W3199901183 cites W1990930479 @default.
- W3199901183 cites W2000445173 @default.
- W3199901183 cites W2014188621 @default.
- W3199901183 cites W2034806082 @default.
- W3199901183 cites W2039811614 @default.
- W3199901183 cites W2048576379 @default.
- W3199901183 cites W2064903582 @default.
- W3199901183 cites W2110818436 @default.
- W3199901183 cites W2126049444 @default.
- W3199901183 cites W2132324013 @default.
- W3199901183 cites W213628847 @default.
- W3199901183 cites W2150291618 @default.
- W3199901183 cites W2462689321 @default.
- W3199901183 cites W2469047452 @default.
- W3199901183 cites W2584924584 @default.
- W3199901183 cites W2602458679 @default.
- W3199901183 cites W2919115771 @default.
- W3199901183 cites W2922075579 @default.
- W3199901183 cites W2964261049 @default.
- W3199901183 cites W2982188023 @default.
- W3199901183 cites W3005497627 @default.
- W3199901183 cites W3041564249 @default.
- W3199901183 cites W3099006712 @default.
- W3199901183 cites W3122812581 @default.
- W3199901183 cites W3150893739 @default.
- W3199901183 doi "https://doi.org/10.1186/s12874-021-01383-x" @default.
- W3199901183 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8454087" @default.
- W3199901183 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34544367" @default.
- W3199901183 hasPublicationYear "2021" @default.
- W3199901183 type Work @default.
- W3199901183 sameAs 3199901183 @default.
- W3199901183 citedByCount "4" @default.
- W3199901183 countsByYear W31999011832022 @default.
- W3199901183 countsByYear W31999011832023 @default.
- W3199901183 crossrefType "journal-article" @default.
- W3199901183 hasAuthorship W3199901183A5052719967 @default.
- W3199901183 hasAuthorship W3199901183A5070732816 @default.
- W3199901183 hasAuthorship W3199901183A5080060046 @default.
- W3199901183 hasBestOaLocation W31999011831 @default.
- W3199901183 hasConcept C105795698 @default.
- W3199901183 hasConcept C119043178 @default.
- W3199901183 hasConcept C119857082 @default.
- W3199901183 hasConcept C121332964 @default.
- W3199901183 hasConcept C124101348 @default.
- W3199901183 hasConcept C141071460 @default.
- W3199901183 hasConcept C149782125 @default.
- W3199901183 hasConcept C154945302 @default.
- W3199901183 hasConcept C158600405 @default.
- W3199901183 hasConcept C168563851 @default.
- W3199901183 hasConcept C177212765 @default.
- W3199901183 hasConcept C17923572 @default.
- W3199901183 hasConcept C23131810 @default.
- W3199901183 hasConcept C2776214188 @default.
- W3199901183 hasConcept C2778755073 @default.
- W3199901183 hasConcept C33923547 @default.
- W3199901183 hasConcept C40423286 @default.
- W3199901183 hasConcept C41008148 @default.
- W3199901183 hasConcept C62520636 @default.
- W3199901183 hasConcept C71924100 @default.
- W3199901183 hasConcept C77088390 @default.
- W3199901183 hasConceptScore W3199901183C105795698 @default.
- W3199901183 hasConceptScore W3199901183C119043178 @default.
- W3199901183 hasConceptScore W3199901183C119857082 @default.
- W3199901183 hasConceptScore W3199901183C121332964 @default.
- W3199901183 hasConceptScore W3199901183C124101348 @default.
- W3199901183 hasConceptScore W3199901183C141071460 @default.
- W3199901183 hasConceptScore W3199901183C149782125 @default.
- W3199901183 hasConceptScore W3199901183C154945302 @default.
- W3199901183 hasConceptScore W3199901183C158600405 @default.
- W3199901183 hasConceptScore W3199901183C168563851 @default.
- W3199901183 hasConceptScore W3199901183C177212765 @default.
- W3199901183 hasConceptScore W3199901183C17923572 @default.
- W3199901183 hasConceptScore W3199901183C23131810 @default.
- W3199901183 hasConceptScore W3199901183C2776214188 @default.
- W3199901183 hasConceptScore W3199901183C2778755073 @default.
- W3199901183 hasConceptScore W3199901183C33923547 @default.
- W3199901183 hasConceptScore W3199901183C40423286 @default.
- W3199901183 hasConceptScore W3199901183C41008148 @default.
- W3199901183 hasConceptScore W3199901183C62520636 @default.
- W3199901183 hasConceptScore W3199901183C71924100 @default.
- W3199901183 hasConceptScore W3199901183C77088390 @default.
- W3199901183 hasIssue "1" @default.
- W3199901183 hasLocation W31999011831 @default.
- W3199901183 hasLocation W31999011832 @default.
- W3199901183 hasLocation W31999011833 @default.
- W3199901183 hasLocation W31999011834 @default.
- W3199901183 hasOpenAccess W3199901183 @default.
- W3199901183 hasPrimaryLocation W31999011831 @default.
- W3199901183 hasRelatedWork W1552146162 @default.
- W3199901183 hasRelatedWork W2128457051 @default.
- W3199901183 hasRelatedWork W2526929158 @default.
- W3199901183 hasRelatedWork W2529304099 @default.