Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199901558> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3199901558 abstract "Several raw materials for “green” energy production, such as high purity quartz, lithium, rare earth elements, beryllium, tantalum, and caesium, can be sourced from a rock type known as pegmatite. The GREENPEG project (https://www.greenpeg.eu/), started in May 2020, is developing and testing new and advanced exploration technologies and algorithms to be integrated and upscaled into flexible, ready-to-use economically efficient and sustainable methods for finding buried pegmatites and their “green” technology raw materials. One of the tasks of this project aims to apply different image processing techniques to different satellite images (Landsat, ASTER, and Sentinel-2) in order to automatically identify pegmatite bodies. In this work, we will present the preliminary results, regarding the application of machine learning algorithms (ML), more specifically, random forests (RF) and support vector machines (SVM) to one of the study areas of the project in Tysfjord, northern Norway, to identify pegmatite bodies. To be able to determine the classes that would make up the study area, geological data of the region, such as lithological maps, aeromagnetic data, and high-resolution aerial photographs, were used to define the four classes (1. pegmatites, 2. water bodies, 3. vegetation, 4. granite). All training locations were randomly selected, with 25% of the samples split into testing, and the remaining 75% split for training. The SVM algorithm presented more promising results in relation to overfitting and final image classification than RF. Testing the algorithms with several variables of parameters was able to make the process more efficient. Acknowledgments This study is funded by European Union’s Horizon 2020 innovation programme under grant agreement No 869274, project GREENPEG: New Exploration Tools for European Pegmatite Green-Tech Resources." @default.
- W3199901558 created "2021-09-27" @default.
- W3199901558 creator A5017175046 @default.
- W3199901558 creator A5078996706 @default.
- W3199901558 creator A5079098913 @default.
- W3199901558 creator A5079288310 @default.
- W3199901558 creator A5080730743 @default.
- W3199901558 date "2021-09-12" @default.
- W3199901558 modified "2023-10-15" @default.
- W3199901558 title "Identification of pegmatite bodies, at a province scale, using machine learning algorithms: preliminary results" @default.
- W3199901558 cites W1988054515 @default.
- W3199901558 cites W1990653740 @default.
- W3199901558 cites W2009872177 @default.
- W3199901558 cites W2082140503 @default.
- W3199901558 cites W2090362565 @default.
- W3199901558 cites W2110114082 @default.
- W3199901558 cites W2156909104 @default.
- W3199901558 cites W2275921817 @default.
- W3199901558 cites W2901140285 @default.
- W3199901558 cites W2966671746 @default.
- W3199901558 cites W2977863792 @default.
- W3199901558 cites W2977974025 @default.
- W3199901558 cites W3044930361 @default.
- W3199901558 cites W3165928178 @default.
- W3199901558 doi "https://doi.org/10.1117/12.2599600" @default.
- W3199901558 hasPublicationYear "2021" @default.
- W3199901558 type Work @default.
- W3199901558 sameAs 3199901558 @default.
- W3199901558 citedByCount "5" @default.
- W3199901558 countsByYear W31999015582022 @default.
- W3199901558 countsByYear W31999015582023 @default.
- W3199901558 crossrefType "proceedings-article" @default.
- W3199901558 hasAuthorship W3199901558A5017175046 @default.
- W3199901558 hasAuthorship W3199901558A5078996706 @default.
- W3199901558 hasAuthorship W3199901558A5079098913 @default.
- W3199901558 hasAuthorship W3199901558A5079288310 @default.
- W3199901558 hasAuthorship W3199901558A5080730743 @default.
- W3199901558 hasConcept C11413529 @default.
- W3199901558 hasConcept C119857082 @default.
- W3199901558 hasConcept C12267149 @default.
- W3199901558 hasConcept C127313418 @default.
- W3199901558 hasConcept C154945302 @default.
- W3199901558 hasConcept C195845463 @default.
- W3199901558 hasConcept C199289684 @default.
- W3199901558 hasConcept C205649164 @default.
- W3199901558 hasConcept C22019652 @default.
- W3199901558 hasConcept C2778755073 @default.
- W3199901558 hasConcept C41008148 @default.
- W3199901558 hasConcept C50644808 @default.
- W3199901558 hasConcept C58640448 @default.
- W3199901558 hasConcept C62649853 @default.
- W3199901558 hasConceptScore W3199901558C11413529 @default.
- W3199901558 hasConceptScore W3199901558C119857082 @default.
- W3199901558 hasConceptScore W3199901558C12267149 @default.
- W3199901558 hasConceptScore W3199901558C127313418 @default.
- W3199901558 hasConceptScore W3199901558C154945302 @default.
- W3199901558 hasConceptScore W3199901558C195845463 @default.
- W3199901558 hasConceptScore W3199901558C199289684 @default.
- W3199901558 hasConceptScore W3199901558C205649164 @default.
- W3199901558 hasConceptScore W3199901558C22019652 @default.
- W3199901558 hasConceptScore W3199901558C2778755073 @default.
- W3199901558 hasConceptScore W3199901558C41008148 @default.
- W3199901558 hasConceptScore W3199901558C50644808 @default.
- W3199901558 hasConceptScore W3199901558C58640448 @default.
- W3199901558 hasConceptScore W3199901558C62649853 @default.
- W3199901558 hasLocation W31999015581 @default.
- W3199901558 hasOpenAccess W3199901558 @default.
- W3199901558 hasPrimaryLocation W31999015581 @default.
- W3199901558 hasRelatedWork W1996541855 @default.
- W3199901558 hasRelatedWork W2003998164 @default.
- W3199901558 hasRelatedWork W2985459377 @default.
- W3199901558 hasRelatedWork W2989932438 @default.
- W3199901558 hasRelatedWork W3011996705 @default.
- W3199901558 hasRelatedWork W3099765033 @default.
- W3199901558 hasRelatedWork W3175189414 @default.
- W3199901558 hasRelatedWork W4205958290 @default.
- W3199901558 hasRelatedWork W4210794429 @default.
- W3199901558 hasRelatedWork W4225691219 @default.
- W3199901558 isParatext "false" @default.
- W3199901558 isRetracted "false" @default.
- W3199901558 magId "3199901558" @default.
- W3199901558 workType "article" @default.