Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199919953> ?p ?o ?g. }
- W3199919953 abstract "To find a suitable method for analyzing electronic portal imaging device (EPID) transmission fluence maps for the identification of position errors in the in vivo dose monitoring of patients with Graves' ophthalmopathy (GO).Position errors combining 0-, 2-, and 4-mm errors in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions in the delivery of 40 GO patient radiotherapy plans to a human head phantom were simulated and EPID transmission fluence maps were acquired. Dose difference (DD) and structural similarity (SSIM) maps were calculated to quantify changes in the fluence maps. Three types of machine learning (ML) models that utilize radiomics features of the DD maps (ML 1 models), features of the SSIM maps (ML 2 models), and features of both DD and SSIM maps (ML 3 models) as inputs were used to perform three types of position error classification, namely a binary classification of the isocenter error (type 1), three binary classifications of LR, SI, and AP direction errors (type 2), and an eight-element classification of the combined LR, SI, and AP direction errors (type 3). Convolutional neural network (CNN) was also used to classify position errors using the DD and SSIM maps as input.The best-performing ML 1 model was XGBoost, which achieved accuracies of 0.889, 0.755, 0.778, 0.833, and 0.532 in the type 1, type 2-LR, type 2-AP, type 2-SI, and type 3 classification, respectively. The best ML 2 model was XGBoost, which achieved accuracies of 0.856, 0.731, 0.736, 0.949, and 0.491, respectively. The best ML 3 model was linear discriminant classifier (LDC), which achieved accuracies of 0.903, 0.792, 0.870, 0.931, and 0.671, respectively. The CNN achieved classification accuracies of 0.925, 0.833, 0.875, 0.949, and 0.689, respectively.ML models and CNN using combined DD and SSIM maps can analyze EPID transmission fluence maps to identify position errors in the treatment of GO patients. Further studies with large sample sizes are needed to improve the accuracy of CNN." @default.
- W3199919953 created "2021-09-27" @default.
- W3199919953 creator A5007091069 @default.
- W3199919953 creator A5011307607 @default.
- W3199919953 creator A5020135121 @default.
- W3199919953 creator A5021393404 @default.
- W3199919953 creator A5024075471 @default.
- W3199919953 creator A5039258833 @default.
- W3199919953 creator A5040854034 @default.
- W3199919953 creator A5043080523 @default.
- W3199919953 creator A5050053624 @default.
- W3199919953 creator A5068377419 @default.
- W3199919953 creator A5082309806 @default.
- W3199919953 creator A5088423634 @default.
- W3199919953 date "2021-09-14" @default.
- W3199919953 modified "2023-09-26" @default.
- W3199919953 title "Analysis of EPID Transmission Fluence Maps Using Machine Learning Models and CNN for Identifying Position Errors in the Treatment of GO Patients" @default.
- W3199919953 cites W1815893500 @default.
- W3199919953 cites W1972531581 @default.
- W3199919953 cites W1991393867 @default.
- W3199919953 cites W2017009851 @default.
- W3199919953 cites W2084851290 @default.
- W3199919953 cites W2108445644 @default.
- W3199919953 cites W2109504804 @default.
- W3199919953 cites W2133665775 @default.
- W3199919953 cites W2146626039 @default.
- W3199919953 cites W2154907709 @default.
- W3199919953 cites W2174661749 @default.
- W3199919953 cites W2428507792 @default.
- W3199919953 cites W2566426994 @default.
- W3199919953 cites W2578782937 @default.
- W3199919953 cites W2763355946 @default.
- W3199919953 cites W2767128594 @default.
- W3199919953 cites W2767302590 @default.
- W3199919953 cites W2781679412 @default.
- W3199919953 cites W2791113390 @default.
- W3199919953 cites W2804712679 @default.
- W3199919953 cites W2886022628 @default.
- W3199919953 cites W2887229430 @default.
- W3199919953 cites W2896442338 @default.
- W3199919953 cites W2905098610 @default.
- W3199919953 cites W2955267891 @default.
- W3199919953 cites W2973526303 @default.
- W3199919953 cites W2998691889 @default.
- W3199919953 cites W3003026830 @default.
- W3199919953 cites W3018300689 @default.
- W3199919953 cites W3020016599 @default.
- W3199919953 cites W3023189324 @default.
- W3199919953 cites W3025748968 @default.
- W3199919953 cites W3045580449 @default.
- W3199919953 cites W3045788395 @default.
- W3199919953 cites W3087795675 @default.
- W3199919953 cites W3088334344 @default.
- W3199919953 cites W3090756503 @default.
- W3199919953 cites W3093156106 @default.
- W3199919953 cites W3095135529 @default.
- W3199919953 cites W3102476541 @default.
- W3199919953 cites W3111667553 @default.
- W3199919953 cites W3134298750 @default.
- W3199919953 doi "https://doi.org/10.3389/fonc.2021.721591" @default.
- W3199919953 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8476908" @default.
- W3199919953 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34595115" @default.
- W3199919953 hasPublicationYear "2021" @default.
- W3199919953 type Work @default.
- W3199919953 sameAs 3199919953 @default.
- W3199919953 citedByCount "4" @default.
- W3199919953 countsByYear W31999199532021 @default.
- W3199919953 countsByYear W31999199532022 @default.
- W3199919953 countsByYear W31999199532023 @default.
- W3199919953 crossrefType "journal-article" @default.
- W3199919953 hasAuthorship W3199919953A5007091069 @default.
- W3199919953 hasAuthorship W3199919953A5011307607 @default.
- W3199919953 hasAuthorship W3199919953A5020135121 @default.
- W3199919953 hasAuthorship W3199919953A5021393404 @default.
- W3199919953 hasAuthorship W3199919953A5024075471 @default.
- W3199919953 hasAuthorship W3199919953A5039258833 @default.
- W3199919953 hasAuthorship W3199919953A5040854034 @default.
- W3199919953 hasAuthorship W3199919953A5043080523 @default.
- W3199919953 hasAuthorship W3199919953A5050053624 @default.
- W3199919953 hasAuthorship W3199919953A5068377419 @default.
- W3199919953 hasAuthorship W3199919953A5082309806 @default.
- W3199919953 hasAuthorship W3199919953A5088423634 @default.
- W3199919953 hasBestOaLocation W31999199531 @default.
- W3199919953 hasConcept C10138342 @default.
- W3199919953 hasConcept C104293457 @default.
- W3199919953 hasConcept C108583219 @default.
- W3199919953 hasConcept C153180895 @default.
- W3199919953 hasConcept C154945302 @default.
- W3199919953 hasConcept C162324750 @default.
- W3199919953 hasConcept C181401712 @default.
- W3199919953 hasConcept C198082294 @default.
- W3199919953 hasConcept C2989005 @default.
- W3199919953 hasConcept C31601959 @default.
- W3199919953 hasConcept C31972630 @default.
- W3199919953 hasConcept C33923547 @default.
- W3199919953 hasConcept C41008148 @default.
- W3199919953 hasConcept C48372109 @default.
- W3199919953 hasConcept C71924100 @default.
- W3199919953 hasConcept C761482 @default.
- W3199919953 hasConcept C76155785 @default.