Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199950983> ?p ?o ?g. }
- W3199950983 endingPage "4231" @default.
- W3199950983 startingPage "4231" @default.
- W3199950983 abstract "<p style='text-indent:20px;'>This paper considers the initial value problem of general nonlinear stochastic fractional integro-differential equations with weakly singular kernels. Our effort is devoted to establishing some fine estimates to include all the cases of Abel-type singular kernels. Firstly, the existence, uniqueness and continuous dependence on the initial value of the true solution under local Lipschitz condition and linear growth condition are derived in detail. Secondly, the Euler–Maruyama method is developed for solving numerically the equation, and then its strong convergence is proven under the same conditions as the well-posedness. Moreover, we obtain the accurate convergence rate of this method under global Lipschitz condition and linear growth condition. In particular, the Euler–Maruyama method can reach strong first-order superconvergence when <inline-formula><tex-math id=M1>begin{document}$ alpha = 1 $end{document}</tex-math></inline-formula>. Finally, several numerical tests are reported for verification of the theoretical findings.</p>" @default.
- W3199950983 created "2021-09-27" @default.
- W3199950983 creator A5000007169 @default.
- W3199950983 creator A5046464565 @default.
- W3199950983 creator A5050223422 @default.
- W3199950983 date "2022-01-01" @default.
- W3199950983 modified "2023-09-27" @default.
- W3199950983 title "Stochastic fractional integro-differential equations with weakly singular kernels: Well-posedness and Euler–Maruyama approximation" @default.
- W3199950983 cites W1494628843 @default.
- W3199950983 cites W1499969990 @default.
- W3199950983 cites W1542004730 @default.
- W3199950983 cites W1974312448 @default.
- W3199950983 cites W1978275259 @default.
- W3199950983 cites W1981041832 @default.
- W3199950983 cites W1982807058 @default.
- W3199950983 cites W1997851700 @default.
- W3199950983 cites W2015206096 @default.
- W3199950983 cites W2018728740 @default.
- W3199950983 cites W2021492437 @default.
- W3199950983 cites W2021629544 @default.
- W3199950983 cites W2024842502 @default.
- W3199950983 cites W2077383639 @default.
- W3199950983 cites W2086764121 @default.
- W3199950983 cites W2088012285 @default.
- W3199950983 cites W2093085986 @default.
- W3199950983 cites W2094644588 @default.
- W3199950983 cites W2094988508 @default.
- W3199950983 cites W2117981819 @default.
- W3199950983 cites W2198011566 @default.
- W3199950983 cites W2250535267 @default.
- W3199950983 cites W2286813955 @default.
- W3199950983 cites W2491631991 @default.
- W3199950983 cites W2560277216 @default.
- W3199950983 cites W2563245034 @default.
- W3199950983 cites W2563352603 @default.
- W3199950983 cites W2594395784 @default.
- W3199950983 cites W2770290312 @default.
- W3199950983 cites W2800810559 @default.
- W3199950983 cites W2804055043 @default.
- W3199950983 cites W2890307190 @default.
- W3199950983 cites W2895919576 @default.
- W3199950983 cites W2899926923 @default.
- W3199950983 cites W2916906663 @default.
- W3199950983 cites W2951662467 @default.
- W3199950983 cites W2962989646 @default.
- W3199950983 cites W2963347032 @default.
- W3199950983 cites W2995765547 @default.
- W3199950983 cites W3022499148 @default.
- W3199950983 cites W3026544389 @default.
- W3199950983 cites W3049274426 @default.
- W3199950983 cites W4231021340 @default.
- W3199950983 cites W4232649288 @default.
- W3199950983 cites W4247953052 @default.
- W3199950983 cites W2046713920 @default.
- W3199950983 doi "https://doi.org/10.3934/dcdsb.2021225" @default.
- W3199950983 hasPublicationYear "2022" @default.
- W3199950983 type Work @default.
- W3199950983 sameAs 3199950983 @default.
- W3199950983 citedByCount "7" @default.
- W3199950983 countsByYear W31999509832022 @default.
- W3199950983 countsByYear W31999509832023 @default.
- W3199950983 crossrefType "journal-article" @default.
- W3199950983 hasAuthorship W3199950983A5000007169 @default.
- W3199950983 hasAuthorship W3199950983A5046464565 @default.
- W3199950983 hasAuthorship W3199950983A5050223422 @default.
- W3199950983 hasBestOaLocation W31999509831 @default.
- W3199950983 hasConcept C119599485 @default.
- W3199950983 hasConcept C121332964 @default.
- W3199950983 hasConcept C127162648 @default.
- W3199950983 hasConcept C127413603 @default.
- W3199950983 hasConcept C134306372 @default.
- W3199950983 hasConcept C135628077 @default.
- W3199950983 hasConcept C158622935 @default.
- W3199950983 hasConcept C162324750 @default.
- W3199950983 hasConcept C22324862 @default.
- W3199950983 hasConcept C26955809 @default.
- W3199950983 hasConcept C2777021972 @default.
- W3199950983 hasConcept C2777303404 @default.
- W3199950983 hasConcept C28826006 @default.
- W3199950983 hasConcept C33923547 @default.
- W3199950983 hasConcept C38409319 @default.
- W3199950983 hasConcept C50522688 @default.
- W3199950983 hasConcept C57869625 @default.
- W3199950983 hasConcept C62520636 @default.
- W3199950983 hasConcept C62884695 @default.
- W3199950983 hasConcept C768646 @default.
- W3199950983 hasConcept C83295009 @default.
- W3199950983 hasConcept C97355855 @default.
- W3199950983 hasConceptScore W3199950983C119599485 @default.
- W3199950983 hasConceptScore W3199950983C121332964 @default.
- W3199950983 hasConceptScore W3199950983C127162648 @default.
- W3199950983 hasConceptScore W3199950983C127413603 @default.
- W3199950983 hasConceptScore W3199950983C134306372 @default.
- W3199950983 hasConceptScore W3199950983C135628077 @default.
- W3199950983 hasConceptScore W3199950983C158622935 @default.
- W3199950983 hasConceptScore W3199950983C162324750 @default.
- W3199950983 hasConceptScore W3199950983C22324862 @default.
- W3199950983 hasConceptScore W3199950983C26955809 @default.