Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199971500> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3199971500 abstract "In the real-life application scenarios, the collected point clouds are often sparse, noisy and non-uniform, especially if the application is unable to capture the local spatial layout due to the lack of points. Thus, point cloud upsampling aims to transform sparse point clouds into dense point clouds with uniform point distribution. This study proposes a generative adversarial network-based point cloud upsampling network called CM-Net (Circular Multi-Frequency Network). The model consists of two parts: a generator and a discriminator. The generator's purpose is to convert the input sparse point cloud into a dense upsampling point cloud with our specific parts, includes multi-frequency pooling module and positive polygon-based code. On the contrary, the discriminator incudes two parts; a feature extractor and a convolutional network module, which optimizes the generator's performance. Experimental results show that our network can learn the point cloud's underlying geometric information very well, and complete the even distribution points." @default.
- W3199971500 created "2021-09-27" @default.
- W3199971500 creator A5018836811 @default.
- W3199971500 creator A5067652312 @default.
- W3199971500 creator A5081357598 @default.
- W3199971500 creator A5090106064 @default.
- W3199971500 date "2021-07-18" @default.
- W3199971500 modified "2023-09-26" @default.
- W3199971500 title "CM-Net: a point cloud upsampling network based on adversarial neural network" @default.
- W3199971500 cites W1988317275 @default.
- W3199971500 cites W2025973801 @default.
- W3199971500 cites W2137531922 @default.
- W3199971500 cites W2169611956 @default.
- W3199971500 cites W2194775991 @default.
- W3199971500 cites W2738588019 @default.
- W3199971500 cites W2962701877 @default.
- W3199971500 cites W2963390820 @default.
- W3199971500 cites W2963680153 @default.
- W3199971500 cites W2997337685 @default.
- W3199971500 doi "https://doi.org/10.1109/ijcnn52387.2021.9533464" @default.
- W3199971500 hasPublicationYear "2021" @default.
- W3199971500 type Work @default.
- W3199971500 sameAs 3199971500 @default.
- W3199971500 citedByCount "1" @default.
- W3199971500 countsByYear W31999715002022 @default.
- W3199971500 crossrefType "proceedings-article" @default.
- W3199971500 hasAuthorship W3199971500A5018836811 @default.
- W3199971500 hasAuthorship W3199971500A5067652312 @default.
- W3199971500 hasAuthorship W3199971500A5081357598 @default.
- W3199971500 hasAuthorship W3199971500A5090106064 @default.
- W3199971500 hasConcept C110384440 @default.
- W3199971500 hasConcept C111919701 @default.
- W3199971500 hasConcept C11413529 @default.
- W3199971500 hasConcept C115961682 @default.
- W3199971500 hasConcept C121332964 @default.
- W3199971500 hasConcept C131979681 @default.
- W3199971500 hasConcept C154945302 @default.
- W3199971500 hasConcept C163258240 @default.
- W3199971500 hasConcept C2524010 @default.
- W3199971500 hasConcept C2779803651 @default.
- W3199971500 hasConcept C2780992000 @default.
- W3199971500 hasConcept C28719098 @default.
- W3199971500 hasConcept C33923547 @default.
- W3199971500 hasConcept C41008148 @default.
- W3199971500 hasConcept C62520636 @default.
- W3199971500 hasConcept C76155785 @default.
- W3199971500 hasConcept C79974875 @default.
- W3199971500 hasConcept C81363708 @default.
- W3199971500 hasConcept C94915269 @default.
- W3199971500 hasConceptScore W3199971500C110384440 @default.
- W3199971500 hasConceptScore W3199971500C111919701 @default.
- W3199971500 hasConceptScore W3199971500C11413529 @default.
- W3199971500 hasConceptScore W3199971500C115961682 @default.
- W3199971500 hasConceptScore W3199971500C121332964 @default.
- W3199971500 hasConceptScore W3199971500C131979681 @default.
- W3199971500 hasConceptScore W3199971500C154945302 @default.
- W3199971500 hasConceptScore W3199971500C163258240 @default.
- W3199971500 hasConceptScore W3199971500C2524010 @default.
- W3199971500 hasConceptScore W3199971500C2779803651 @default.
- W3199971500 hasConceptScore W3199971500C2780992000 @default.
- W3199971500 hasConceptScore W3199971500C28719098 @default.
- W3199971500 hasConceptScore W3199971500C33923547 @default.
- W3199971500 hasConceptScore W3199971500C41008148 @default.
- W3199971500 hasConceptScore W3199971500C62520636 @default.
- W3199971500 hasConceptScore W3199971500C76155785 @default.
- W3199971500 hasConceptScore W3199971500C79974875 @default.
- W3199971500 hasConceptScore W3199971500C81363708 @default.
- W3199971500 hasConceptScore W3199971500C94915269 @default.
- W3199971500 hasLocation W31999715001 @default.
- W3199971500 hasOpenAccess W3199971500 @default.
- W3199971500 hasPrimaryLocation W31999715001 @default.
- W3199971500 hasRelatedWork W2964166424 @default.
- W3199971500 hasRelatedWork W2987365737 @default.
- W3199971500 hasRelatedWork W3005064157 @default.
- W3199971500 hasRelatedWork W3091976719 @default.
- W3199971500 hasRelatedWork W3119540290 @default.
- W3199971500 hasRelatedWork W3199971500 @default.
- W3199971500 hasRelatedWork W3209202081 @default.
- W3199971500 hasRelatedWork W3214732802 @default.
- W3199971500 hasRelatedWork W4225279041 @default.
- W3199971500 hasRelatedWork W4226324275 @default.
- W3199971500 isParatext "false" @default.
- W3199971500 isRetracted "false" @default.
- W3199971500 magId "3199971500" @default.
- W3199971500 workType "article" @default.