Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200010478> ?p ?o ?g. }
- W3200010478 endingPage "83" @default.
- W3200010478 startingPage "64" @default.
- W3200010478 abstract "Artificial intelligence (AI) and operations research (OR) have long been intertwined because of their synergistic relationship. Given the increasing popularity of AI and machine learning in particular, we face growing demand for educational offerings in this area from our students. This paper describes two courses that introduce machine learning concepts to undergraduate, predominantly industrial engineering and operations research students. Instead of taking a methods-first approach, these courses use real-world applications to motivate, introduce, and explore these machine learning techniques and highlight meaningful overlap with operations research. Significant hands-on coding experience is used to build student proficiency with the techniques. Student feedback indicates that these courses have greatly increased student interest in machine learning and appreciation of the real-world impact that analytics can have and helped students develop practical skills that they can apply. We believe that similar application-driven courses that connect machine learning and operations research would be valuable additions to undergraduate OR curricula broadly. Supplemental Material: Supplemental material is available at https://doi.org/10.1287/ited.2021.0256 ." @default.
- W3200010478 created "2021-09-27" @default.
- W3200010478 creator A5058195202 @default.
- W3200010478 creator A5064304685 @default.
- W3200010478 date "2023-01-01" @default.
- W3200010478 modified "2023-09-24" @default.
- W3200010478 title "Introducing and Integrating Machine Learning in an Operations Research Curriculum: An Application-Driven Course" @default.
- W3200010478 cites W1588441429 @default.
- W3200010478 cites W1877971276 @default.
- W3200010478 cites W1967103901 @default.
- W3200010478 cites W1976408464 @default.
- W3200010478 cites W1991773164 @default.
- W3200010478 cites W2003638804 @default.
- W3200010478 cites W2011301426 @default.
- W3200010478 cites W2020562184 @default.
- W3200010478 cites W2030322782 @default.
- W3200010478 cites W2031813555 @default.
- W3200010478 cites W2035317549 @default.
- W3200010478 cites W2076063813 @default.
- W3200010478 cites W2108454087 @default.
- W3200010478 cites W2108598243 @default.
- W3200010478 cites W2109910161 @default.
- W3200010478 cites W2117666205 @default.
- W3200010478 cites W2118546973 @default.
- W3200010478 cites W2136958771 @default.
- W3200010478 cites W2146141698 @default.
- W3200010478 cites W2147220807 @default.
- W3200010478 cites W2212290806 @default.
- W3200010478 cites W2257979135 @default.
- W3200010478 cites W2312041016 @default.
- W3200010478 cites W2509058245 @default.
- W3200010478 cites W2557738935 @default.
- W3200010478 cites W2591892707 @default.
- W3200010478 cites W2604736517 @default.
- W3200010478 cites W2766447205 @default.
- W3200010478 cites W2807804912 @default.
- W3200010478 cites W2892182060 @default.
- W3200010478 cites W2895466345 @default.
- W3200010478 cites W2902907165 @default.
- W3200010478 cites W2906311950 @default.
- W3200010478 cites W2910392324 @default.
- W3200010478 cites W2911796152 @default.
- W3200010478 cites W2919436926 @default.
- W3200010478 cites W2942640611 @default.
- W3200010478 cites W2944646092 @default.
- W3200010478 cites W2973584137 @default.
- W3200010478 cites W2984983445 @default.
- W3200010478 cites W2997618083 @default.
- W3200010478 cites W3080525044 @default.
- W3200010478 cites W3099878876 @default.
- W3200010478 cites W3102178346 @default.
- W3200010478 cites W3103145119 @default.
- W3200010478 cites W3106879385 @default.
- W3200010478 cites W4250589301 @default.
- W3200010478 doi "https://doi.org/10.1287/ited.2021.0256" @default.
- W3200010478 hasPublicationYear "2023" @default.
- W3200010478 type Work @default.
- W3200010478 sameAs 3200010478 @default.
- W3200010478 citedByCount "3" @default.
- W3200010478 countsByYear W32000104782023 @default.
- W3200010478 crossrefType "journal-article" @default.
- W3200010478 hasAuthorship W3200010478A5058195202 @default.
- W3200010478 hasAuthorship W3200010478A5064304685 @default.
- W3200010478 hasConcept C119857082 @default.
- W3200010478 hasConcept C145420912 @default.
- W3200010478 hasConcept C154945302 @default.
- W3200010478 hasConcept C15744967 @default.
- W3200010478 hasConcept C19417346 @default.
- W3200010478 hasConcept C2522767166 @default.
- W3200010478 hasConcept C2780586970 @default.
- W3200010478 hasConcept C2986563244 @default.
- W3200010478 hasConcept C33923547 @default.
- W3200010478 hasConcept C41008148 @default.
- W3200010478 hasConcept C47177190 @default.
- W3200010478 hasConcept C77805123 @default.
- W3200010478 hasConcept C79158427 @default.
- W3200010478 hasConceptScore W3200010478C119857082 @default.
- W3200010478 hasConceptScore W3200010478C145420912 @default.
- W3200010478 hasConceptScore W3200010478C154945302 @default.
- W3200010478 hasConceptScore W3200010478C15744967 @default.
- W3200010478 hasConceptScore W3200010478C19417346 @default.
- W3200010478 hasConceptScore W3200010478C2522767166 @default.
- W3200010478 hasConceptScore W3200010478C2780586970 @default.
- W3200010478 hasConceptScore W3200010478C2986563244 @default.
- W3200010478 hasConceptScore W3200010478C33923547 @default.
- W3200010478 hasConceptScore W3200010478C41008148 @default.
- W3200010478 hasConceptScore W3200010478C47177190 @default.
- W3200010478 hasConceptScore W3200010478C77805123 @default.
- W3200010478 hasConceptScore W3200010478C79158427 @default.
- W3200010478 hasIssue "2" @default.
- W3200010478 hasLocation W32000104781 @default.
- W3200010478 hasOpenAccess W3200010478 @default.
- W3200010478 hasPrimaryLocation W32000104781 @default.
- W3200010478 hasRelatedWork W2104700403 @default.
- W3200010478 hasRelatedWork W2133515697 @default.
- W3200010478 hasRelatedWork W2327857945 @default.
- W3200010478 hasRelatedWork W2368216841 @default.
- W3200010478 hasRelatedWork W2377333748 @default.