Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200014914> ?p ?o ?g. }
- W3200014914 endingPage "2697" @default.
- W3200014914 startingPage "2643" @default.
- W3200014914 abstract "K-polystability is, on the one hand, conjecturally equivalent to the existence of certain canonical Kahler metrics on polarised varieties, and, on the other hand, conjecturally gives the correct notion to form moduli. We introduce a notion of stability for families of K-polystable varieties, extending the classical notion of slope stability of a bundle, viewed as a family of K-polystable varieties via the associated projectivisation. We conjecture that this is the correct condition for forming moduli of fibrations. Our main result relates this stability condition to Kahler geometry: we prove that the existence of an optimal symplectic connection implies semistability of the fibration. An optimal symplectic connection is a choice of fibrewise constant scalar curvature Kahler metric, satisfying a certain geometric partial differential equation. We conjecture that the existence of such a connection is equivalent to polystability of the fibration. We prove a finite dimensional analogue of this conjecture, by describing a GIT problem for fibrations embedded in a fixed projective space, and showing that GIT polystability is equivalent to the existence of a zero of a certain moment map." @default.
- W3200014914 created "2021-09-27" @default.
- W3200014914 creator A5020993951 @default.
- W3200014914 creator A5070389295 @default.
- W3200014914 date "2021-09-03" @default.
- W3200014914 modified "2023-09-23" @default.
- W3200014914 title "Moduli theory, stability of fibrations and optimal symplectic connections" @default.
- W3200014914 cites W10927993 @default.
- W3200014914 cites W116259974 @default.
- W3200014914 cites W1504483056 @default.
- W3200014914 cites W1538392730 @default.
- W3200014914 cites W1544507452 @default.
- W3200014914 cites W1595246290 @default.
- W3200014914 cites W1747547793 @default.
- W3200014914 cites W1827173265 @default.
- W3200014914 cites W1972026766 @default.
- W3200014914 cites W1979825680 @default.
- W3200014914 cites W1985667955 @default.
- W3200014914 cites W198660567 @default.
- W3200014914 cites W2002327995 @default.
- W3200014914 cites W2004950021 @default.
- W3200014914 cites W2023314141 @default.
- W3200014914 cites W2027552637 @default.
- W3200014914 cites W2034958095 @default.
- W3200014914 cites W2048484424 @default.
- W3200014914 cites W2059913730 @default.
- W3200014914 cites W2076559073 @default.
- W3200014914 cites W2102886748 @default.
- W3200014914 cites W2113853271 @default.
- W3200014914 cites W2114425390 @default.
- W3200014914 cites W2115868612 @default.
- W3200014914 cites W2116163539 @default.
- W3200014914 cites W2128601884 @default.
- W3200014914 cites W2132525987 @default.
- W3200014914 cites W2149257300 @default.
- W3200014914 cites W2288307188 @default.
- W3200014914 cites W2547832281 @default.
- W3200014914 cites W2962696860 @default.
- W3200014914 cites W2963066170 @default.
- W3200014914 cites W2963349529 @default.
- W3200014914 cites W2963489824 @default.
- W3200014914 cites W2963605234 @default.
- W3200014914 cites W2963876493 @default.
- W3200014914 cites W2964079207 @default.
- W3200014914 cites W2964285138 @default.
- W3200014914 cites W2984596273 @default.
- W3200014914 cites W3048256775 @default.
- W3200014914 cites W3087160907 @default.
- W3200014914 cites W3094254613 @default.
- W3200014914 cites W3101711318 @default.
- W3200014914 cites W3109872558 @default.
- W3200014914 cites W4241140300 @default.
- W3200014914 cites W4248269519 @default.
- W3200014914 cites W4248532778 @default.
- W3200014914 cites W4250550876 @default.
- W3200014914 cites W4250845885 @default.
- W3200014914 cites W4300779862 @default.
- W3200014914 cites W618158592 @default.
- W3200014914 doi "https://doi.org/10.2140/gt.2021.25.2643" @default.
- W3200014914 hasPublicationYear "2021" @default.
- W3200014914 type Work @default.
- W3200014914 sameAs 3200014914 @default.
- W3200014914 citedByCount "3" @default.
- W3200014914 countsByYear W32000149142023 @default.
- W3200014914 crossrefType "journal-article" @default.
- W3200014914 hasAuthorship W3200014914A5020993951 @default.
- W3200014914 hasAuthorship W3200014914A5070389295 @default.
- W3200014914 hasBestOaLocation W32000149142 @default.
- W3200014914 hasConcept C121089165 @default.
- W3200014914 hasConcept C121332964 @default.
- W3200014914 hasConcept C13355873 @default.
- W3200014914 hasConcept C134306372 @default.
- W3200014914 hasConcept C168619227 @default.
- W3200014914 hasConcept C192939610 @default.
- W3200014914 hasConcept C202444582 @default.
- W3200014914 hasConcept C2524010 @default.
- W3200014914 hasConcept C2780990831 @default.
- W3200014914 hasConcept C33923547 @default.
- W3200014914 hasConcept C40265840 @default.
- W3200014914 hasConcept C54486226 @default.
- W3200014914 hasConcept C5961521 @default.
- W3200014914 hasConcept C62520636 @default.
- W3200014914 hasConcept C73373263 @default.
- W3200014914 hasConceptScore W3200014914C121089165 @default.
- W3200014914 hasConceptScore W3200014914C121332964 @default.
- W3200014914 hasConceptScore W3200014914C13355873 @default.
- W3200014914 hasConceptScore W3200014914C134306372 @default.
- W3200014914 hasConceptScore W3200014914C168619227 @default.
- W3200014914 hasConceptScore W3200014914C192939610 @default.
- W3200014914 hasConceptScore W3200014914C202444582 @default.
- W3200014914 hasConceptScore W3200014914C2524010 @default.
- W3200014914 hasConceptScore W3200014914C2780990831 @default.
- W3200014914 hasConceptScore W3200014914C33923547 @default.
- W3200014914 hasConceptScore W3200014914C40265840 @default.
- W3200014914 hasConceptScore W3200014914C54486226 @default.
- W3200014914 hasConceptScore W3200014914C5961521 @default.
- W3200014914 hasConceptScore W3200014914C62520636 @default.
- W3200014914 hasConceptScore W3200014914C73373263 @default.