Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200089128> ?p ?o ?g. }
- W3200089128 endingPage "100627" @default.
- W3200089128 startingPage "100627" @default.
- W3200089128 abstract "Rice is one of the world’s staple food sources, with millions of tonnes produced and consumed every year. Therefore, mapping rice paddies is essential for agricultural management and ensuring food security. This study aimed to classify rice crops in southern Brazil using the SENTINEL-1 SAR time series and deep learning models, comparing two architectures (U-net and LinkNet) and four backbones (ResNet-34, ResNeXt-50, DenseNet-121, and VGG16). The time series construction considered ten images, each for a month, covering the rice planting cycle. The Convolutional Neural Network architectures were adapted to use multi-band data, allowing the extraction of features from all-temporal images. This approach provides capturing spatiotemporal information from rice plantations, which favors its detection. Besides, the research evaluated three data sets considering the polarizations: (a) VV-only, (b) VH-only, and (c) both VV and VH (VV + VH). The classification accuracies used to measure the performance of the models were the overall accuracy, F1-measure, area under the precision-recall curve (AUPRC), and the intersection over union (IoU). Results show that the VH + VV polarization combination yielded the best results, followed by VH-only and VV-only. The VV-only polarization had significantly worst results (nearly 10% less IoU than VH-only and nearly 15% less IoU compared to VV + VH). The results show that rice fields can be successfully classified with deep learning models and through our evaluation the LinkNet architecture with the ResNeXt-50 backbone showed the best results with an accuracy of 0.98, F1 of 0.93, AUPRC of 0.93, and IoU of 0.91." @default.
- W3200089128 created "2021-09-27" @default.
- W3200089128 creator A5008925624 @default.
- W3200089128 creator A5022607605 @default.
- W3200089128 creator A5056966645 @default.
- W3200089128 creator A5057329014 @default.
- W3200089128 creator A5064484839 @default.
- W3200089128 creator A5083036615 @default.
- W3200089128 date "2021-11-01" @default.
- W3200089128 modified "2023-10-16" @default.
- W3200089128 title "Irrigated rice crop identification in Southern Brazil using convolutional neural networks and Sentinel-1 time series" @default.
- W3200089128 cites W1974760592 @default.
- W3200089128 cites W1984792953 @default.
- W3200089128 cites W1986658172 @default.
- W3200089128 cites W1987478911 @default.
- W3200089128 cites W1990147589 @default.
- W3200089128 cites W1990244654 @default.
- W3200089128 cites W2003323862 @default.
- W3200089128 cites W2034394311 @default.
- W3200089128 cites W2044091385 @default.
- W3200089128 cites W2075001972 @default.
- W3200089128 cites W2109090765 @default.
- W3200089128 cites W2118534670 @default.
- W3200089128 cites W2134778497 @default.
- W3200089128 cites W2151250213 @default.
- W3200089128 cites W2173718107 @default.
- W3200089128 cites W2290326488 @default.
- W3200089128 cites W2406711962 @default.
- W3200089128 cites W2487649765 @default.
- W3200089128 cites W250311148 @default.
- W3200089128 cites W2520905560 @default.
- W3200089128 cites W2565741358 @default.
- W3200089128 cites W2604086375 @default.
- W3200089128 cites W2610199124 @default.
- W3200089128 cites W2725897987 @default.
- W3200089128 cites W2726342881 @default.
- W3200089128 cites W2766696621 @default.
- W3200089128 cites W2769642400 @default.
- W3200089128 cites W2770233088 @default.
- W3200089128 cites W2774940675 @default.
- W3200089128 cites W2781809052 @default.
- W3200089128 cites W2782522152 @default.
- W3200089128 cites W2785681726 @default.
- W3200089128 cites W2791200330 @default.
- W3200089128 cites W2793923031 @default.
- W3200089128 cites W2886493749 @default.
- W3200089128 cites W2889759488 @default.
- W3200089128 cites W2901719150 @default.
- W3200089128 cites W2903282641 @default.
- W3200089128 cites W2904551046 @default.
- W3200089128 cites W2907663452 @default.
- W3200089128 cites W2923165032 @default.
- W3200089128 cites W2937220696 @default.
- W3200089128 cites W2939118835 @default.
- W3200089128 cites W2940726923 @default.
- W3200089128 cites W2944708990 @default.
- W3200089128 cites W2973071571 @default.
- W3200089128 cites W2974382310 @default.
- W3200089128 cites W2983090166 @default.
- W3200089128 cites W2986339177 @default.
- W3200089128 cites W2988916019 @default.
- W3200089128 cites W2995133354 @default.
- W3200089128 cites W3004981719 @default.
- W3200089128 cites W3008439211 @default.
- W3200089128 cites W3009518842 @default.
- W3200089128 cites W3014120959 @default.
- W3200089128 cites W3016213868 @default.
- W3200089128 cites W3034524308 @default.
- W3200089128 cites W3035975187 @default.
- W3200089128 cites W3073623721 @default.
- W3200089128 cites W3087408166 @default.
- W3200089128 cites W3089681013 @default.
- W3200089128 cites W3102619772 @default.
- W3200089128 cites W3114763141 @default.
- W3200089128 cites W3119089275 @default.
- W3200089128 doi "https://doi.org/10.1016/j.rsase.2021.100627" @default.
- W3200089128 hasPublicationYear "2021" @default.
- W3200089128 type Work @default.
- W3200089128 sameAs 3200089128 @default.
- W3200089128 citedByCount "3" @default.
- W3200089128 countsByYear W32000891282022 @default.
- W3200089128 countsByYear W32000891282023 @default.
- W3200089128 crossrefType "journal-article" @default.
- W3200089128 hasAuthorship W3200089128A5008925624 @default.
- W3200089128 hasAuthorship W3200089128A5022607605 @default.
- W3200089128 hasAuthorship W3200089128A5056966645 @default.
- W3200089128 hasAuthorship W3200089128A5057329014 @default.
- W3200089128 hasAuthorship W3200089128A5064484839 @default.
- W3200089128 hasAuthorship W3200089128A5083036615 @default.
- W3200089128 hasConcept C108583219 @default.
- W3200089128 hasConcept C153180895 @default.
- W3200089128 hasConcept C154945302 @default.
- W3200089128 hasConcept C33923547 @default.
- W3200089128 hasConcept C41008148 @default.
- W3200089128 hasConcept C6557445 @default.
- W3200089128 hasConcept C81363708 @default.
- W3200089128 hasConcept C85582077 @default.
- W3200089128 hasConcept C86803240 @default.