Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200096162> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3200096162 endingPage "505607" @default.
- W3200096162 startingPage "505607" @default.
- W3200096162 abstract "Plasmons of noble metal nanoparticles have played an important role in energy transfer research, biomedical sensing, drug preparation and photocatalysis in recent years. The scattering spectra of nanoparticles are dramatically affected by numerous complex parameters, such as morphology, material, and volumes, making the parameters design a necessary step before the experiment. However, the plasmonic design is limited by several difficulties, such as the high degree of freedom, expensive trial and error costs. Herein, a plasmonic design method based on dual strategy deep learning is proposed, which can provide the design proposals according to the required spectrum. To make the model closer to the real experimental situation, the boundary element method (BEM) was used to build a scattering spectra dataset of geometric nanoparticles (>1,200,000 samples). Driven by the above data, the artificial intelligence (AI) model learns the relationship between spectral features and design parameters. Then, the performance statistics of the model were implemented from multiple dimensions, and a high design precision of over 90% was achieved in testing cases (testing samples >120,000). Moreover, to verify the realizability of the proposed model, the scattering spectra of nanoparticles designed by AI were constructed using a dark-field microscope system. The experimental results showed that the deviation between the target and the actual spectra was very small and within the acceptable range. This proves the realizability of the AI model proposed in this paper, and sheds light on the application of AI in plasmonic design." @default.
- W3200096162 created "2021-09-27" @default.
- W3200096162 creator A5033017179 @default.
- W3200096162 creator A5055720455 @default.
- W3200096162 date "2021-10-06" @default.
- W3200096162 modified "2023-10-16" @default.
- W3200096162 title "Deep learning: an efficient method for plasmonic design of geometric nanoparticles" @default.
- W3200096162 cites W1969260872 @default.
- W3200096162 cites W1992791995 @default.
- W3200096162 cites W2023005421 @default.
- W3200096162 cites W2043159229 @default.
- W3200096162 cites W2044994459 @default.
- W3200096162 cites W2051276349 @default.
- W3200096162 cites W2055790580 @default.
- W3200096162 cites W2097990426 @default.
- W3200096162 cites W2165044365 @default.
- W3200096162 cites W2322683803 @default.
- W3200096162 cites W2412588118 @default.
- W3200096162 cites W2474334896 @default.
- W3200096162 cites W2503787241 @default.
- W3200096162 cites W2774998853 @default.
- W3200096162 cites W2775280502 @default.
- W3200096162 cites W2806536390 @default.
- W3200096162 cites W2901203306 @default.
- W3200096162 cites W2949960465 @default.
- W3200096162 cites W2985883399 @default.
- W3200096162 cites W2996685490 @default.
- W3200096162 cites W2999044305 @default.
- W3200096162 cites W3017248743 @default.
- W3200096162 cites W3046749048 @default.
- W3200096162 cites W3083947857 @default.
- W3200096162 cites W3100751385 @default.
- W3200096162 cites W3102208401 @default.
- W3200096162 cites W3104698820 @default.
- W3200096162 cites W3107308400 @default.
- W3200096162 cites W3160262531 @default.
- W3200096162 cites W3171037864 @default.
- W3200096162 doi "https://doi.org/10.1088/1361-6528/ac2769" @default.
- W3200096162 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34530417" @default.
- W3200096162 hasPublicationYear "2021" @default.
- W3200096162 type Work @default.
- W3200096162 sameAs 3200096162 @default.
- W3200096162 citedByCount "3" @default.
- W3200096162 countsByYear W32000961622022 @default.
- W3200096162 crossrefType "journal-article" @default.
- W3200096162 hasAuthorship W3200096162A5033017179 @default.
- W3200096162 hasAuthorship W3200096162A5055720455 @default.
- W3200096162 hasConcept C108583219 @default.
- W3200096162 hasConcept C110879396 @default.
- W3200096162 hasConcept C154945302 @default.
- W3200096162 hasConcept C155672457 @default.
- W3200096162 hasConcept C171250308 @default.
- W3200096162 hasConcept C192562407 @default.
- W3200096162 hasConcept C41008148 @default.
- W3200096162 hasConcept C49040817 @default.
- W3200096162 hasConcept C85255121 @default.
- W3200096162 hasConceptScore W3200096162C108583219 @default.
- W3200096162 hasConceptScore W3200096162C110879396 @default.
- W3200096162 hasConceptScore W3200096162C154945302 @default.
- W3200096162 hasConceptScore W3200096162C155672457 @default.
- W3200096162 hasConceptScore W3200096162C171250308 @default.
- W3200096162 hasConceptScore W3200096162C192562407 @default.
- W3200096162 hasConceptScore W3200096162C41008148 @default.
- W3200096162 hasConceptScore W3200096162C49040817 @default.
- W3200096162 hasConceptScore W3200096162C85255121 @default.
- W3200096162 hasFunder F4320321001 @default.
- W3200096162 hasIssue "50" @default.
- W3200096162 hasLocation W32000961621 @default.
- W3200096162 hasOpenAccess W3200096162 @default.
- W3200096162 hasPrimaryLocation W32000961621 @default.
- W3200096162 hasRelatedWork W13854752 @default.
- W3200096162 hasRelatedWork W1911204177 @default.
- W3200096162 hasRelatedWork W2123703043 @default.
- W3200096162 hasRelatedWork W2147354651 @default.
- W3200096162 hasRelatedWork W2883138762 @default.
- W3200096162 hasRelatedWork W2898081535 @default.
- W3200096162 hasRelatedWork W2914864030 @default.
- W3200096162 hasRelatedWork W2993086550 @default.
- W3200096162 hasRelatedWork W3038186054 @default.
- W3200096162 hasRelatedWork W3201298217 @default.
- W3200096162 hasVolume "32" @default.
- W3200096162 isParatext "false" @default.
- W3200096162 isRetracted "false" @default.
- W3200096162 magId "3200096162" @default.
- W3200096162 workType "article" @default.