Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200096547> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3200096547 endingPage "1674" @default.
- W3200096547 startingPage "1662" @default.
- W3200096547 abstract "Seismic reservoir prediction plays an important role in oil exploration and development. With the progress of artificial intelligence, many achievements have been made in machine learning seismic reservoir prediction. However, due to the factors such as economic cost, exploration maturity, and technical limitations, it is often difficult to obtain a large number of training samples for machine learning. In this case, the prediction accuracy cannot meet the requirements. To overcome this shortcoming, we develop a new machine learning reservoir prediction method based on virtual sample generation. In this method, the virtual samples, which are generated in a high-dimensional hypersphere space, are more consistent with the original data characteristics. Furthermore, at the stage of model building after virtual sample generation, virtual samples screening and model iterative optimization are used to eliminate noise samples and ensure the rationality of virtual samples. The proposed method has been applied to standard function data and real seismic data. The results show that this method can improve the prediction accuracy of machine learning significantly." @default.
- W3200096547 created "2021-09-27" @default.
- W3200096547 creator A5008644196 @default.
- W3200096547 creator A5038272110 @default.
- W3200096547 creator A5056254311 @default.
- W3200096547 date "2021-12-01" @default.
- W3200096547 modified "2023-10-16" @default.
- W3200096547 title "Machine learning seismic reservoir prediction method based on virtual sample generation" @default.
- W3200096547 cites W1574066498 @default.
- W3200096547 cites W1982651196 @default.
- W3200096547 cites W2001141328 @default.
- W3200096547 cites W2006656670 @default.
- W3200096547 cites W2007556383 @default.
- W3200096547 cites W2010354425 @default.
- W3200096547 cites W2011742363 @default.
- W3200096547 cites W2021606167 @default.
- W3200096547 cites W2027961713 @default.
- W3200096547 cites W2036045975 @default.
- W3200096547 cites W2111072639 @default.
- W3200096547 cites W2122613489 @default.
- W3200096547 cites W2125003829 @default.
- W3200096547 cites W2141695047 @default.
- W3200096547 cites W2167025280 @default.
- W3200096547 cites W2301541953 @default.
- W3200096547 cites W2337409330 @default.
- W3200096547 cites W2746122193 @default.
- W3200096547 cites W2768926548 @default.
- W3200096547 cites W2897567342 @default.
- W3200096547 cites W2897746180 @default.
- W3200096547 cites W2989259119 @default.
- W3200096547 cites W3015170749 @default.
- W3200096547 cites W3033247985 @default.
- W3200096547 cites W3038818616 @default.
- W3200096547 doi "https://doi.org/10.1016/j.petsci.2021.09.034" @default.
- W3200096547 hasPublicationYear "2021" @default.
- W3200096547 type Work @default.
- W3200096547 sameAs 3200096547 @default.
- W3200096547 citedByCount "13" @default.
- W3200096547 countsByYear W32000965472022 @default.
- W3200096547 countsByYear W32000965472023 @default.
- W3200096547 crossrefType "journal-article" @default.
- W3200096547 hasAuthorship W3200096547A5008644196 @default.
- W3200096547 hasAuthorship W3200096547A5038272110 @default.
- W3200096547 hasAuthorship W3200096547A5056254311 @default.
- W3200096547 hasBestOaLocation W32000965471 @default.
- W3200096547 hasConcept C111919701 @default.
- W3200096547 hasConcept C119857082 @default.
- W3200096547 hasConcept C124101348 @default.
- W3200096547 hasConcept C127413603 @default.
- W3200096547 hasConcept C154945302 @default.
- W3200096547 hasConcept C185592680 @default.
- W3200096547 hasConcept C194969405 @default.
- W3200096547 hasConcept C198531522 @default.
- W3200096547 hasConcept C25344961 @default.
- W3200096547 hasConcept C2776562905 @default.
- W3200096547 hasConcept C41008148 @default.
- W3200096547 hasConcept C43617362 @default.
- W3200096547 hasConceptScore W3200096547C111919701 @default.
- W3200096547 hasConceptScore W3200096547C119857082 @default.
- W3200096547 hasConceptScore W3200096547C124101348 @default.
- W3200096547 hasConceptScore W3200096547C127413603 @default.
- W3200096547 hasConceptScore W3200096547C154945302 @default.
- W3200096547 hasConceptScore W3200096547C185592680 @default.
- W3200096547 hasConceptScore W3200096547C194969405 @default.
- W3200096547 hasConceptScore W3200096547C198531522 @default.
- W3200096547 hasConceptScore W3200096547C25344961 @default.
- W3200096547 hasConceptScore W3200096547C2776562905 @default.
- W3200096547 hasConceptScore W3200096547C41008148 @default.
- W3200096547 hasConceptScore W3200096547C43617362 @default.
- W3200096547 hasFunder F4320321001 @default.
- W3200096547 hasIssue "6" @default.
- W3200096547 hasLocation W32000965471 @default.
- W3200096547 hasOpenAccess W3200096547 @default.
- W3200096547 hasPrimaryLocation W32000965471 @default.
- W3200096547 hasRelatedWork W2899084033 @default.
- W3200096547 hasRelatedWork W2961085424 @default.
- W3200096547 hasRelatedWork W3046775127 @default.
- W3200096547 hasRelatedWork W3140221241 @default.
- W3200096547 hasRelatedWork W4285260836 @default.
- W3200096547 hasRelatedWork W4286629047 @default.
- W3200096547 hasRelatedWork W4289860834 @default.
- W3200096547 hasRelatedWork W4306321456 @default.
- W3200096547 hasRelatedWork W4306674287 @default.
- W3200096547 hasRelatedWork W4224009465 @default.
- W3200096547 hasVolume "18" @default.
- W3200096547 isParatext "false" @default.
- W3200096547 isRetracted "false" @default.
- W3200096547 magId "3200096547" @default.
- W3200096547 workType "article" @default.