Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200107768> ?p ?o ?g. }
- W3200107768 endingPage "1690" @default.
- W3200107768 startingPage "1690" @default.
- W3200107768 abstract "Volume of interest segmentation is an essential step in computer-aided detection and diagnosis (CAD) systems. Deep learning (DL)-based methods provide good performance for prostate segmentation, but little is known about the reproducibility of these methods. In this work, an in-house collected dataset from 244 patients was used to investigate the intra-patient reproducibility of 14 shape features for DL-based segmentation methods of the whole prostate gland (WP), peripheral zone (PZ), and the remaining prostate zones (non-PZ) on T2-weighted (T2W) magnetic resonance (MR) images compared to manual segmentations. The DL-based segmentation was performed using three different convolutional neural networks (CNNs): V-Net, nnU-Net-2D, and nnU-Net-3D. The two-way random, single score intra-class correlation coefficient (ICC) was used to measure the inter-scan reproducibility of each feature for each CNN and the manual segmentation. We found that the reproducibility of the investigated methods is comparable to manual for all CNNs (14/14 features), except for V-Net in PZ (7/14 features). The ICC score for segmentation volume was found to be 0.888, 0.607, 0.819, and 0.903 in PZ; 0.988, 0.967, 0.986, and 0.983 in non-PZ; 0.982, 0.975, 0.973, and 0.984 in WP for manual, V-Net, nnU-Net-2D, and nnU-Net-3D, respectively. The results of this work show the feasibility of embedding DL-based segmentation in CAD systems, based on multiple T2W MR scans of the prostate, which is an important step towards the clinical implementation." @default.
- W3200107768 created "2021-09-27" @default.
- W3200107768 creator A5003832108 @default.
- W3200107768 creator A5041269751 @default.
- W3200107768 creator A5066405171 @default.
- W3200107768 creator A5075700709 @default.
- W3200107768 creator A5081483883 @default.
- W3200107768 creator A5091181966 @default.
- W3200107768 creator A5074446924 @default.
- W3200107768 date "2021-09-16" @default.
- W3200107768 modified "2023-10-05" @default.
- W3200107768 title "The Reproducibility of Deep Learning-Based Segmentation of the Prostate Gland and Zones on T2-Weighted MR Images" @default.
- W3200107768 cites W1827911007 @default.
- W3200107768 cites W1901129140 @default.
- W3200107768 cites W2002756791 @default.
- W3200107768 cites W2015795623 @default.
- W3200107768 cites W2030288965 @default.
- W3200107768 cites W2049522781 @default.
- W3200107768 cites W2052617496 @default.
- W3200107768 cites W2067724039 @default.
- W3200107768 cites W2070531509 @default.
- W3200107768 cites W2071763517 @default.
- W3200107768 cites W2086279260 @default.
- W3200107768 cites W2091649086 @default.
- W3200107768 cites W2107030642 @default.
- W3200107768 cites W2110065044 @default.
- W3200107768 cites W2124539070 @default.
- W3200107768 cites W2127890285 @default.
- W3200107768 cites W2128365375 @default.
- W3200107768 cites W2141403362 @default.
- W3200107768 cites W2145920976 @default.
- W3200107768 cites W2152939626 @default.
- W3200107768 cites W2395925941 @default.
- W3200107768 cites W2404945401 @default.
- W3200107768 cites W2511949746 @default.
- W3200107768 cites W2540953619 @default.
- W3200107768 cites W2767128594 @default.
- W3200107768 cites W2778234364 @default.
- W3200107768 cites W2785027610 @default.
- W3200107768 cites W2887766402 @default.
- W3200107768 cites W2889646458 @default.
- W3200107768 cites W2892096175 @default.
- W3200107768 cites W2914806156 @default.
- W3200107768 cites W2922071185 @default.
- W3200107768 cites W2952406314 @default.
- W3200107768 cites W2962914239 @default.
- W3200107768 cites W2963883833 @default.
- W3200107768 cites W2979653841 @default.
- W3200107768 cites W3002822554 @default.
- W3200107768 cites W3010331388 @default.
- W3200107768 cites W3013376562 @default.
- W3200107768 cites W3022125716 @default.
- W3200107768 cites W3033221365 @default.
- W3200107768 cites W3087069033 @default.
- W3200107768 cites W3091877881 @default.
- W3200107768 cites W3112701542 @default.
- W3200107768 cites W3113984743 @default.
- W3200107768 cites W353421755 @default.
- W3200107768 doi "https://doi.org/10.3390/diagnostics11091690" @default.
- W3200107768 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8471645" @default.
- W3200107768 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34574031" @default.
- W3200107768 hasPublicationYear "2021" @default.
- W3200107768 type Work @default.
- W3200107768 sameAs 3200107768 @default.
- W3200107768 citedByCount "7" @default.
- W3200107768 countsByYear W32001077682022 @default.
- W3200107768 countsByYear W32001077682023 @default.
- W3200107768 crossrefType "journal-article" @default.
- W3200107768 hasAuthorship W3200107768A5003832108 @default.
- W3200107768 hasAuthorship W3200107768A5041269751 @default.
- W3200107768 hasAuthorship W3200107768A5066405171 @default.
- W3200107768 hasAuthorship W3200107768A5074446924 @default.
- W3200107768 hasAuthorship W3200107768A5075700709 @default.
- W3200107768 hasAuthorship W3200107768A5081483883 @default.
- W3200107768 hasAuthorship W3200107768A5091181966 @default.
- W3200107768 hasBestOaLocation W32001077681 @default.
- W3200107768 hasConcept C105795698 @default.
- W3200107768 hasConcept C121608353 @default.
- W3200107768 hasConcept C126322002 @default.
- W3200107768 hasConcept C126838900 @default.
- W3200107768 hasConcept C143409427 @default.
- W3200107768 hasConcept C153180895 @default.
- W3200107768 hasConcept C154945302 @default.
- W3200107768 hasConcept C185592680 @default.
- W3200107768 hasConcept C194789388 @default.
- W3200107768 hasConcept C2776235491 @default.
- W3200107768 hasConcept C33923547 @default.
- W3200107768 hasConcept C41008148 @default.
- W3200107768 hasConcept C55493867 @default.
- W3200107768 hasConcept C71924100 @default.
- W3200107768 hasConcept C81363708 @default.
- W3200107768 hasConcept C89600930 @default.
- W3200107768 hasConcept C9893847 @default.
- W3200107768 hasConceptScore W3200107768C105795698 @default.
- W3200107768 hasConceptScore W3200107768C121608353 @default.
- W3200107768 hasConceptScore W3200107768C126322002 @default.
- W3200107768 hasConceptScore W3200107768C126838900 @default.
- W3200107768 hasConceptScore W3200107768C143409427 @default.