Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200123309> ?p ?o ?g. }
- W3200123309 endingPage "3985" @default.
- W3200123309 startingPage "3970" @default.
- W3200123309 abstract "Summary This work studies 1D steady-state flow of gas from compressible shale matrix subject to water blocking toward a neighboring fracture. Water blocking is a capillary end effect causing wetting phase (e.g., water) to accumulate near the transition from matrix to fracture. Hydraulic fracturing is essential for economical shale gas production. Water is frequently used as fracturing fluid, but its accumulation in the matrix can reduce gas mobility and production rate. Gas transport is considered at a defined pressure drop. The model accounts for apparent permeability (slip), compressibility of gas and shale, permeability reduction, saturation tortuosity (reduced relative permeability upon compaction), and multiphase flow parameters like relative permeability and capillary pressure, which depend on wettability. The behavior of gas flow rate and distributions of gas saturation, pressure, and permeability subject to different conditions and the stated mechanisms is explored. Water blockage reduces gas relative permeability over a large zone and reduces the gas flow rate. Despite gas flowing, strong capillary forces sustain mobile water over the entire system. Reducing drawdown gave lower driving force and higher resistance (by water blockage) for gas flow. The results show that 75% reduction of drawdown made the gas flow rate a couple orders of magnitude lower compared to if there was no blockage. The impact was most severe in more water-wet systems. The blockage caused most of the pressure drop to occur near the outlet. High pressure in the rest of the system reduced effects from gas decompression, matrix compression, and slip-enhanced permeability, whereas rapid gradients in all these effects occurred near the outlet. Gas decompression resulted in an approximately 10 times higher Darcy velocity and pressure gradient near the outlet compared to inlet, which contributed to removing blockage, but the added resistance reduced the gas production rate. Similarly, higher gas Corey exponent associated gas flow with higher pressure drop. The result was less blockage but lower gas production. Slip increased permeability, especially toward the outlet, and contributed to increase in gas production by 16%. Significant matrix compression was associated with permeability reduction and increased Corey exponent in some examples. These effects reduced production and shifted more of the pressure drop toward the outlet. Upstream pressure was more uniform, and less compression and permeability reduction were seen overall compared to a system without water blockage." @default.
- W3200123309 created "2021-09-27" @default.
- W3200123309 creator A5058466019 @default.
- W3200123309 date "2021-09-14" @default.
- W3200123309 modified "2023-10-13" @default.
- W3200123309 title "Steady-State Gas Flow from Tight Shale Matrix Subject to Water Blocking" @default.
- W3200123309 cites W1734529207 @default.
- W3200123309 cites W1970577503 @default.
- W3200123309 cites W1972160746 @default.
- W3200123309 cites W1987211948 @default.
- W3200123309 cites W1987859673 @default.
- W3200123309 cites W1989079678 @default.
- W3200123309 cites W1993288443 @default.
- W3200123309 cites W1995985617 @default.
- W3200123309 cites W2004526669 @default.
- W3200123309 cites W2005439678 @default.
- W3200123309 cites W2006752500 @default.
- W3200123309 cites W2007723281 @default.
- W3200123309 cites W2009951639 @default.
- W3200123309 cites W2012151350 @default.
- W3200123309 cites W2019006773 @default.
- W3200123309 cites W2027762357 @default.
- W3200123309 cites W2032686554 @default.
- W3200123309 cites W2034606502 @default.
- W3200123309 cites W2038679989 @default.
- W3200123309 cites W2048636621 @default.
- W3200123309 cites W2054725104 @default.
- W3200123309 cites W2055705720 @default.
- W3200123309 cites W2057220674 @default.
- W3200123309 cites W2062656576 @default.
- W3200123309 cites W2064513613 @default.
- W3200123309 cites W2070251627 @default.
- W3200123309 cites W2075338008 @default.
- W3200123309 cites W2082523676 @default.
- W3200123309 cites W2096160713 @default.
- W3200123309 cites W2129288307 @default.
- W3200123309 cites W2159501187 @default.
- W3200123309 cites W2281477920 @default.
- W3200123309 cites W2285531864 @default.
- W3200123309 cites W2312934586 @default.
- W3200123309 cites W2318863230 @default.
- W3200123309 cites W2326419697 @default.
- W3200123309 cites W2462900278 @default.
- W3200123309 cites W2476865603 @default.
- W3200123309 cites W2482513827 @default.
- W3200123309 cites W2560579358 @default.
- W3200123309 cites W2572554925 @default.
- W3200123309 cites W2614755440 @default.
- W3200123309 cites W2624957859 @default.
- W3200123309 cites W2735011248 @default.
- W3200123309 cites W2735970063 @default.
- W3200123309 cites W2752932368 @default.
- W3200123309 cites W2769279952 @default.
- W3200123309 cites W2770799505 @default.
- W3200123309 cites W2794515083 @default.
- W3200123309 cites W2795407905 @default.
- W3200123309 cites W2904798533 @default.
- W3200123309 cites W2906909891 @default.
- W3200123309 cites W2915026931 @default.
- W3200123309 cites W2940646981 @default.
- W3200123309 cites W2971468152 @default.
- W3200123309 cites W2972433259 @default.
- W3200123309 cites W2972459020 @default.
- W3200123309 cites W2987378149 @default.
- W3200123309 cites W2987843284 @default.
- W3200123309 cites W2996011451 @default.
- W3200123309 cites W2999522929 @default.
- W3200123309 cites W3006837729 @default.
- W3200123309 cites W3012959082 @default.
- W3200123309 cites W3036045807 @default.
- W3200123309 cites W2019483385 @default.
- W3200123309 doi "https://doi.org/10.2118/202337-pa" @default.
- W3200123309 hasPublicationYear "2021" @default.
- W3200123309 type Work @default.
- W3200123309 sameAs 3200123309 @default.
- W3200123309 citedByCount "5" @default.
- W3200123309 countsByYear W32001233092022 @default.
- W3200123309 countsByYear W32001233092023 @default.
- W3200123309 crossrefType "journal-article" @default.
- W3200123309 hasAuthorship W3200123309A5058466019 @default.
- W3200123309 hasConcept C105569014 @default.
- W3200123309 hasConcept C113378726 @default.
- W3200123309 hasConcept C114088122 @default.
- W3200123309 hasConcept C120882062 @default.
- W3200123309 hasConcept C121332964 @default.
- W3200123309 hasConcept C127313418 @default.
- W3200123309 hasConcept C151730666 @default.
- W3200123309 hasConcept C153127940 @default.
- W3200123309 hasConcept C159985019 @default.
- W3200123309 hasConcept C172120300 @default.
- W3200123309 hasConcept C185004128 @default.
- W3200123309 hasConcept C185592680 @default.
- W3200123309 hasConcept C187320778 @default.
- W3200123309 hasConcept C192562407 @default.
- W3200123309 hasConcept C196806460 @default.
- W3200123309 hasConcept C2777447996 @default.
- W3200123309 hasConcept C2779096232 @default.
- W3200123309 hasConcept C41625074 @default.