Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200146163> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3200146163 endingPage "391" @default.
- W3200146163 startingPage "382" @default.
- W3200146163 abstract "Image reconstruction from undersampled k-space data plays an important role in accelerating the acquisition of MR data, and a lot of deep learning-based methods have been exploited recently. Despite the achieved inspiring results, the optimization of these methods commonly relies on the fully-sampled reference data, which are time-consuming and difficult to collect. To address this issue, we propose a novel self-supervised learning method. Specifically, during model optimization, two subsets are constructed by randomly selecting part of k-space data from the undersampled data and then fed into two parallel reconstruction networks to perform information recovery. Two reconstruction losses are defined on all the scanned data points to enhance the network’s capability of recovering the frequency information. Meanwhile, to constrain the learned unscanned data points of the network, a difference loss is designed to enforce consistency between the two parallel networks. In this way, the reconstruction model can be properly trained with only the undersampled data. During the model evaluation, the undersampled data are treated as the inputs and either of the two trained networks is expected to reconstruct the high-quality results. The proposed method is flexible and can be employed in any existing deep learning-based method. The effectiveness of the method is evaluated on an open brain MRI dataset. Experimental results demonstrate that the proposed self-supervised method can achieve competitive reconstruction performance compared to the corresponding supervised learning method at high acceleration rates (4 and 8). The code is publicly available at https://github.com/chenhu96/Self-Supervised-MRI-Reconstruction." @default.
- W3200146163 created "2021-09-27" @default.
- W3200146163 creator A5018178311 @default.
- W3200146163 creator A5024833275 @default.
- W3200146163 creator A5043069455 @default.
- W3200146163 creator A5050727924 @default.
- W3200146163 creator A5055299862 @default.
- W3200146163 creator A5057647276 @default.
- W3200146163 date "2021-01-01" @default.
- W3200146163 modified "2023-10-10" @default.
- W3200146163 title "Self-supervised Learning for MRI Reconstruction with a Parallel Network Training Framework" @default.
- W3200146163 cites W1901129140 @default.
- W3200146163 cites W2442117232 @default.
- W3200146163 cites W2604388535 @default.
- W3200146163 cites W2781768394 @default.
- W3200146163 cites W2795380527 @default.
- W3200146163 cites W2798559986 @default.
- W3200146163 cites W2883105305 @default.
- W3200146163 cites W3004715589 @default.
- W3200146163 cites W3039236647 @default.
- W3200146163 cites W3100730608 @default.
- W3200146163 cites W3155605146 @default.
- W3200146163 doi "https://doi.org/10.1007/978-3-030-87231-1_37" @default.
- W3200146163 hasPublicationYear "2021" @default.
- W3200146163 type Work @default.
- W3200146163 sameAs 3200146163 @default.
- W3200146163 citedByCount "6" @default.
- W3200146163 countsByYear W32001461632022 @default.
- W3200146163 countsByYear W32001461632023 @default.
- W3200146163 crossrefType "book-chapter" @default.
- W3200146163 hasAuthorship W3200146163A5018178311 @default.
- W3200146163 hasAuthorship W3200146163A5024833275 @default.
- W3200146163 hasAuthorship W3200146163A5043069455 @default.
- W3200146163 hasAuthorship W3200146163A5050727924 @default.
- W3200146163 hasAuthorship W3200146163A5055299862 @default.
- W3200146163 hasAuthorship W3200146163A5057647276 @default.
- W3200146163 hasBestOaLocation W32001461632 @default.
- W3200146163 hasConcept C108583219 @default.
- W3200146163 hasConcept C111919701 @default.
- W3200146163 hasConcept C119857082 @default.
- W3200146163 hasConcept C124101348 @default.
- W3200146163 hasConcept C136389625 @default.
- W3200146163 hasConcept C153180895 @default.
- W3200146163 hasConcept C154945302 @default.
- W3200146163 hasConcept C177264268 @default.
- W3200146163 hasConcept C199360897 @default.
- W3200146163 hasConcept C2776436953 @default.
- W3200146163 hasConcept C2776760102 @default.
- W3200146163 hasConcept C41008148 @default.
- W3200146163 hasConcept C50644808 @default.
- W3200146163 hasConcept C93361087 @default.
- W3200146163 hasConceptScore W3200146163C108583219 @default.
- W3200146163 hasConceptScore W3200146163C111919701 @default.
- W3200146163 hasConceptScore W3200146163C119857082 @default.
- W3200146163 hasConceptScore W3200146163C124101348 @default.
- W3200146163 hasConceptScore W3200146163C136389625 @default.
- W3200146163 hasConceptScore W3200146163C153180895 @default.
- W3200146163 hasConceptScore W3200146163C154945302 @default.
- W3200146163 hasConceptScore W3200146163C177264268 @default.
- W3200146163 hasConceptScore W3200146163C199360897 @default.
- W3200146163 hasConceptScore W3200146163C2776436953 @default.
- W3200146163 hasConceptScore W3200146163C2776760102 @default.
- W3200146163 hasConceptScore W3200146163C41008148 @default.
- W3200146163 hasConceptScore W3200146163C50644808 @default.
- W3200146163 hasConceptScore W3200146163C93361087 @default.
- W3200146163 hasLocation W32001461631 @default.
- W3200146163 hasLocation W32001461632 @default.
- W3200146163 hasOpenAccess W3200146163 @default.
- W3200146163 hasPrimaryLocation W32001461631 @default.
- W3200146163 hasRelatedWork W1985571776 @default.
- W3200146163 hasRelatedWork W2308026613 @default.
- W3200146163 hasRelatedWork W2349091876 @default.
- W3200146163 hasRelatedWork W2358334493 @default.
- W3200146163 hasRelatedWork W2379416403 @default.
- W3200146163 hasRelatedWork W2386805970 @default.
- W3200146163 hasRelatedWork W2403946900 @default.
- W3200146163 hasRelatedWork W2769374332 @default.
- W3200146163 hasRelatedWork W2901600492 @default.
- W3200146163 hasRelatedWork W2971748376 @default.
- W3200146163 isParatext "false" @default.
- W3200146163 isRetracted "false" @default.
- W3200146163 magId "3200146163" @default.
- W3200146163 workType "book-chapter" @default.