Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200162704> ?p ?o ?g. }
- W3200162704 abstract "Abstract The permeability of fractures, including natural and hydraulic, are essential parameters for the modeling of fluid flow in conventional and unconventional fractured reservoirs. However, traditional analytical cubic law (CL-based) models used to estimate fracture permeability show unsatisfactory performance when dealing with different dynamic complexities of fractures. This work presents a data-driven, physics-included model based on machine learning as an alternative to traditional methods. The workflow for the development of the data-driven model includes four steps. Step 1: Identify uncertain parameters and perform Latin Hypercube Sampling (LHS). We first identify the uncertain parameters which affect the fracture permeability. We then generate training samples using LHS. Step 2: Perform training simulations and collect inputs and outputs. In this step, high-resolution simulations with parallel computing for the Navier-Stokes equations (NSEs) are run for each of the training samples. We then collect the inputs and outputs from the simulations. Step 3: Construct an optimized data-driven surrogate model. A data-driven model based on machine learning is then built to model the nonlinear mapping between the inputs and outputs collected from Step 2. Herein, Artificial Neural Network (ANN) coupling with Bayesian optimization algorithm is implemented to obtain the optimized surrogate model. Step 4: Validate the proposed data-driven model. In this step, we conduct blind validation on the proposed model with high-fidelity simulations. We further test the developed surrogate model with newly generated fracture cases with a broad range of roughness and tortuosity under different Reynolds numbers. We then compare its performance to the reference NSEs solutions. Results show that the developed data-driven model delivers good accuracy exceeding 90% for all training, validation, and test samples. This work introduces an integrated workflow for developing a data-driven, physics-included model using machine learning to estimate fracture permeability under complex physics (e.g., inertial effect). To our knowledge, this technique is introduced for the first time for the upscaling of rock fractures. The proposed model offers an efficient and accurate alternative to the traditional upscaling methods that can be readily implemented in reservoir characterization and modeling workflows." @default.
- W3200162704 created "2021-09-27" @default.
- W3200162704 creator A5009325358 @default.
- W3200162704 creator A5018678704 @default.
- W3200162704 creator A5059613649 @default.
- W3200162704 creator A5067974945 @default.
- W3200162704 creator A5072179993 @default.
- W3200162704 creator A5084996089 @default.
- W3200162704 date "2021-09-15" @default.
- W3200162704 modified "2023-09-27" @default.
- W3200162704 title "Fracture Permeability Estimation Under Complex Physics: A Data-Driven Model Using Machine Learning" @default.
- W3200162704 cites W1974355205 @default.
- W3200162704 cites W2020773837 @default.
- W3200162704 cites W2040393875 @default.
- W3200162704 cites W2043384422 @default.
- W3200162704 cites W2048615184 @default.
- W3200162704 cites W2067224114 @default.
- W3200162704 cites W2090337580 @default.
- W3200162704 cites W2101791167 @default.
- W3200162704 cites W2121241273 @default.
- W3200162704 cites W2146765045 @default.
- W3200162704 cites W2150207569 @default.
- W3200162704 cites W2152383451 @default.
- W3200162704 cites W2789300623 @default.
- W3200162704 cites W2921355212 @default.
- W3200162704 cites W2973481132 @default.
- W3200162704 cites W2986037633 @default.
- W3200162704 cites W3000194204 @default.
- W3200162704 cites W3034283940 @default.
- W3200162704 cites W3175835099 @default.
- W3200162704 doi "https://doi.org/10.2118/206352-ms" @default.
- W3200162704 hasPublicationYear "2021" @default.
- W3200162704 type Work @default.
- W3200162704 sameAs 3200162704 @default.
- W3200162704 citedByCount "10" @default.
- W3200162704 countsByYear W32001627042022 @default.
- W3200162704 countsByYear W32001627042023 @default.
- W3200162704 crossrefType "proceedings-article" @default.
- W3200162704 hasAuthorship W3200162704A5009325358 @default.
- W3200162704 hasAuthorship W3200162704A5018678704 @default.
- W3200162704 hasAuthorship W3200162704A5059613649 @default.
- W3200162704 hasAuthorship W3200162704A5067974945 @default.
- W3200162704 hasAuthorship W3200162704A5072179993 @default.
- W3200162704 hasAuthorship W3200162704A5084996089 @default.
- W3200162704 hasConcept C105795698 @default.
- W3200162704 hasConcept C11413529 @default.
- W3200162704 hasConcept C119857082 @default.
- W3200162704 hasConcept C121332964 @default.
- W3200162704 hasConcept C127413603 @default.
- W3200162704 hasConcept C131675550 @default.
- W3200162704 hasConcept C154945302 @default.
- W3200162704 hasConcept C158622935 @default.
- W3200162704 hasConcept C177212765 @default.
- W3200162704 hasConcept C185250623 @default.
- W3200162704 hasConcept C187320778 @default.
- W3200162704 hasConcept C19499675 @default.
- W3200162704 hasConcept C20820323 @default.
- W3200162704 hasConcept C32230216 @default.
- W3200162704 hasConcept C33923547 @default.
- W3200162704 hasConcept C41008148 @default.
- W3200162704 hasConcept C50644808 @default.
- W3200162704 hasConcept C62520636 @default.
- W3200162704 hasConcept C6648577 @default.
- W3200162704 hasConcept C77088390 @default.
- W3200162704 hasConceptScore W3200162704C105795698 @default.
- W3200162704 hasConceptScore W3200162704C11413529 @default.
- W3200162704 hasConceptScore W3200162704C119857082 @default.
- W3200162704 hasConceptScore W3200162704C121332964 @default.
- W3200162704 hasConceptScore W3200162704C127413603 @default.
- W3200162704 hasConceptScore W3200162704C131675550 @default.
- W3200162704 hasConceptScore W3200162704C154945302 @default.
- W3200162704 hasConceptScore W3200162704C158622935 @default.
- W3200162704 hasConceptScore W3200162704C177212765 @default.
- W3200162704 hasConceptScore W3200162704C185250623 @default.
- W3200162704 hasConceptScore W3200162704C187320778 @default.
- W3200162704 hasConceptScore W3200162704C19499675 @default.
- W3200162704 hasConceptScore W3200162704C20820323 @default.
- W3200162704 hasConceptScore W3200162704C32230216 @default.
- W3200162704 hasConceptScore W3200162704C33923547 @default.
- W3200162704 hasConceptScore W3200162704C41008148 @default.
- W3200162704 hasConceptScore W3200162704C50644808 @default.
- W3200162704 hasConceptScore W3200162704C62520636 @default.
- W3200162704 hasConceptScore W3200162704C6648577 @default.
- W3200162704 hasConceptScore W3200162704C77088390 @default.
- W3200162704 hasLocation W32001627041 @default.
- W3200162704 hasOpenAccess W3200162704 @default.
- W3200162704 hasPrimaryLocation W32001627041 @default.
- W3200162704 hasRelatedWork W1990724965 @default.
- W3200162704 hasRelatedWork W2171660690 @default.
- W3200162704 hasRelatedWork W2202349485 @default.
- W3200162704 hasRelatedWork W2335464044 @default.
- W3200162704 hasRelatedWork W2954974841 @default.
- W3200162704 hasRelatedWork W3200162704 @default.
- W3200162704 hasRelatedWork W4210425613 @default.
- W3200162704 hasRelatedWork W4220787423 @default.
- W3200162704 hasRelatedWork W4312678460 @default.
- W3200162704 hasRelatedWork W1629725936 @default.
- W3200162704 isParatext "false" @default.
- W3200162704 isRetracted "false" @default.
- W3200162704 magId "3200162704" @default.