Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200186836> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3200186836 endingPage "918" @default.
- W3200186836 startingPage "918" @default.
- W3200186836 abstract "Background: The unprecedented development of Artificial Intelligence has revolutionised the healthcare industry. In the next generation of healthcare systems, self-diagnosis will be pivotal to personalised healthcare services. During the COVID-19 pandemic, new screening and diagnostic approaches like mobile health are well-positioned to reduce disease spread and overcome geographical barriers. This paper presents a non-invasive screening approach to predict the health of a person from visually observable features using machine learning techniques. Images like face and skin surface of the patients are acquired using camera or mobile devices and analysed to derive clinical reasoning and prediction of the person's health. Methods: In specific, a two-level classification approach is presented. The proposed hierarchical model chooses a class by training a binary classifier at the node of the hierarchy. Prediction is then made using a set of class-specific reduced feature set. Results: Testing accuracies of 86.87% and 76.84% are reported for the first and second-level classification. Empirical results demonstrate that the proposed approach yields favourable prediction results while greatly reduces the computational time. Conclusions: The study suggests that it is possible to predict the health condition of a person based on his/her face appearance using cost-effective machine learning approaches." @default.
- W3200186836 created "2021-09-27" @default.
- W3200186836 creator A5013504311 @default.
- W3200186836 creator A5033879444 @default.
- W3200186836 creator A5037846084 @default.
- W3200186836 creator A5057942268 @default.
- W3200186836 creator A5084508520 @default.
- W3200186836 creator A5090599831 @default.
- W3200186836 date "2021-09-13" @default.
- W3200186836 modified "2023-09-23" @default.
- W3200186836 title "Non-invasive health prediction from visually observable features" @default.
- W3200186836 cites W1968141844 @default.
- W3200186836 cites W1997163597 @default.
- W3200186836 cites W2031599604 @default.
- W3200186836 cites W2166408662 @default.
- W3200186836 cites W2403153566 @default.
- W3200186836 cites W2504335777 @default.
- W3200186836 cites W2774101154 @default.
- W3200186836 cites W2810771013 @default.
- W3200186836 cites W2905441841 @default.
- W3200186836 cites W3010380998 @default.
- W3200186836 cites W3038613619 @default.
- W3200186836 cites W3043152708 @default.
- W3200186836 cites W3099206234 @default.
- W3200186836 doi "https://doi.org/10.12688/f1000research.72894.1" @default.
- W3200186836 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35528954" @default.
- W3200186836 hasPublicationYear "2021" @default.
- W3200186836 type Work @default.
- W3200186836 sameAs 3200186836 @default.
- W3200186836 citedByCount "0" @default.
- W3200186836 crossrefType "journal-article" @default.
- W3200186836 hasAuthorship W3200186836A5013504311 @default.
- W3200186836 hasAuthorship W3200186836A5033879444 @default.
- W3200186836 hasAuthorship W3200186836A5037846084 @default.
- W3200186836 hasAuthorship W3200186836A5057942268 @default.
- W3200186836 hasAuthorship W3200186836A5084508520 @default.
- W3200186836 hasAuthorship W3200186836A5090599831 @default.
- W3200186836 hasConcept C119857082 @default.
- W3200186836 hasConcept C12267149 @default.
- W3200186836 hasConcept C138885662 @default.
- W3200186836 hasConcept C154945302 @default.
- W3200186836 hasConcept C160735492 @default.
- W3200186836 hasConcept C162324750 @default.
- W3200186836 hasConcept C177264268 @default.
- W3200186836 hasConcept C199360897 @default.
- W3200186836 hasConcept C2776401178 @default.
- W3200186836 hasConcept C31170391 @default.
- W3200186836 hasConcept C34447519 @default.
- W3200186836 hasConcept C41008148 @default.
- W3200186836 hasConcept C41895202 @default.
- W3200186836 hasConcept C50522688 @default.
- W3200186836 hasConcept C66905080 @default.
- W3200186836 hasConcept C95623464 @default.
- W3200186836 hasConceptScore W3200186836C119857082 @default.
- W3200186836 hasConceptScore W3200186836C12267149 @default.
- W3200186836 hasConceptScore W3200186836C138885662 @default.
- W3200186836 hasConceptScore W3200186836C154945302 @default.
- W3200186836 hasConceptScore W3200186836C160735492 @default.
- W3200186836 hasConceptScore W3200186836C162324750 @default.
- W3200186836 hasConceptScore W3200186836C177264268 @default.
- W3200186836 hasConceptScore W3200186836C199360897 @default.
- W3200186836 hasConceptScore W3200186836C2776401178 @default.
- W3200186836 hasConceptScore W3200186836C31170391 @default.
- W3200186836 hasConceptScore W3200186836C34447519 @default.
- W3200186836 hasConceptScore W3200186836C41008148 @default.
- W3200186836 hasConceptScore W3200186836C41895202 @default.
- W3200186836 hasConceptScore W3200186836C50522688 @default.
- W3200186836 hasConceptScore W3200186836C66905080 @default.
- W3200186836 hasConceptScore W3200186836C95623464 @default.
- W3200186836 hasLocation W32001868361 @default.
- W3200186836 hasLocation W32001868362 @default.
- W3200186836 hasOpenAccess W3200186836 @default.
- W3200186836 hasPrimaryLocation W32001868361 @default.
- W3200186836 hasRelatedWork W2358749747 @default.
- W3200186836 hasRelatedWork W2556319748 @default.
- W3200186836 hasRelatedWork W2891961174 @default.
- W3200186836 hasRelatedWork W2961085424 @default.
- W3200186836 hasRelatedWork W3200179079 @default.
- W3200186836 hasRelatedWork W3215867059 @default.
- W3200186836 hasRelatedWork W4205288553 @default.
- W3200186836 hasRelatedWork W4249229055 @default.
- W3200186836 hasRelatedWork W4322008322 @default.
- W3200186836 hasRelatedWork W4328092580 @default.
- W3200186836 hasVolume "10" @default.
- W3200186836 isParatext "false" @default.
- W3200186836 isRetracted "false" @default.
- W3200186836 magId "3200186836" @default.
- W3200186836 workType "article" @default.