Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200202386> ?p ?o ?g. }
- W3200202386 endingPage "2525" @default.
- W3200202386 startingPage "2525" @default.
- W3200202386 abstract "Artificial Neural Networks (ANN) have been widely applied in hydrologic and water quality (H/WQ) modeling in the past three decades. Many studies have demonstrated an ANN’s capability to successfully estimate daily streamflow from meteorological data on the watershed level. One major challenge of ANN streamflow modeling is finding the optimal network structure with good generalization capability while ameliorating model overfitting. This study empirically examines two types of model selection approaches for simulating streamflow time series: the out-of-sample approach using blocked cross-validation (BlockedCV) and an in-sample approach that is based on Akaike’s information criterion (AIC) and Bayesian information criterion (BIC). A three-layer feed-forward neural network using a back-propagation algorithm is utilized to create the streamflow models in this study. The rainfall–streamflow relationship of two adjacent, small watersheds in the San Antonio region in south-central Texas are modeled on a daily time scale. The model selection results of the two approaches are compared, and some commonly used performance measures (PMs) are generated on the stand-alone testing datasets to evaluate the models selected by the two approaches. This study finds that, in general, the out-of-sample and in-sample approaches do not converge to the same model selection results, with AIC and BIC selecting simpler models than BlockedCV. The ANNs were found to have good performance in both study watersheds, with BlockedCV selected models having a Nash–Sutcliffe coefficient of efficiency (NSE) of 0.581 and 0.658, and AIC/BIC selected models having a poorer NSE of 0.574 and 0.310, for the two study watersheds. Overall, out-of-sample BlockedCV selected models with better predictive ability and is preferable to model streamflow time series." @default.
- W3200202386 created "2021-09-27" @default.
- W3200202386 creator A5000866037 @default.
- W3200202386 creator A5021099391 @default.
- W3200202386 date "2021-09-15" @default.
- W3200202386 modified "2023-10-02" @default.
- W3200202386 title "A Comparison of In-Sample and Out-of-Sample Model Selection Approaches for Artificial Neural Network (ANN) Daily Streamflow Simulation" @default.
- W3200202386 cites W1834484028 @default.
- W3200202386 cites W1966334841 @default.
- W3200202386 cites W1981780459 @default.
- W3200202386 cites W1998442441 @default.
- W3200202386 cites W2000367265 @default.
- W3200202386 cites W2000923620 @default.
- W3200202386 cites W2002147749 @default.
- W3200202386 cites W2003457432 @default.
- W3200202386 cites W2011227258 @default.
- W3200202386 cites W2011412119 @default.
- W3200202386 cites W2018627212 @default.
- W3200202386 cites W2019936550 @default.
- W3200202386 cites W2023567628 @default.
- W3200202386 cites W2024520223 @default.
- W3200202386 cites W2033904036 @default.
- W3200202386 cites W2036525020 @default.
- W3200202386 cites W2040322256 @default.
- W3200202386 cites W2042506099 @default.
- W3200202386 cites W2045284123 @default.
- W3200202386 cites W2050572634 @default.
- W3200202386 cites W2051778299 @default.
- W3200202386 cites W2058998445 @default.
- W3200202386 cites W2064156189 @default.
- W3200202386 cites W2064732182 @default.
- W3200202386 cites W2066224491 @default.
- W3200202386 cites W2086053079 @default.
- W3200202386 cites W2086573699 @default.
- W3200202386 cites W2090598548 @default.
- W3200202386 cites W2108416032 @default.
- W3200202386 cites W2128801610 @default.
- W3200202386 cites W2154830650 @default.
- W3200202386 cites W2160689147 @default.
- W3200202386 cites W2169886917 @default.
- W3200202386 cites W2172191993 @default.
- W3200202386 cites W2177959459 @default.
- W3200202386 cites W2186440592 @default.
- W3200202386 cites W2230911711 @default.
- W3200202386 cites W2328399833 @default.
- W3200202386 cites W2441507532 @default.
- W3200202386 cites W2482722394 @default.
- W3200202386 cites W2725897987 @default.
- W3200202386 cites W2792906888 @default.
- W3200202386 cites W2891721681 @default.
- W3200202386 cites W2952905952 @default.
- W3200202386 cites W3017323153 @default.
- W3200202386 cites W3104887532 @default.
- W3200202386 doi "https://doi.org/10.3390/w13182525" @default.
- W3200202386 hasPublicationYear "2021" @default.
- W3200202386 type Work @default.
- W3200202386 sameAs 3200202386 @default.
- W3200202386 citedByCount "5" @default.
- W3200202386 countsByYear W32002023862022 @default.
- W3200202386 countsByYear W32002023862023 @default.
- W3200202386 crossrefType "journal-article" @default.
- W3200202386 hasAuthorship W3200202386A5000866037 @default.
- W3200202386 hasAuthorship W3200202386A5021099391 @default.
- W3200202386 hasBestOaLocation W32002023861 @default.
- W3200202386 hasConcept C105795698 @default.
- W3200202386 hasConcept C119857082 @default.
- W3200202386 hasConcept C124101348 @default.
- W3200202386 hasConcept C126645576 @default.
- W3200202386 hasConcept C126674687 @default.
- W3200202386 hasConcept C134306372 @default.
- W3200202386 hasConcept C154945302 @default.
- W3200202386 hasConcept C168136583 @default.
- W3200202386 hasConcept C177148314 @default.
- W3200202386 hasConcept C185592680 @default.
- W3200202386 hasConcept C198531522 @default.
- W3200202386 hasConcept C205649164 @default.
- W3200202386 hasConcept C22019652 @default.
- W3200202386 hasConcept C33923547 @default.
- W3200202386 hasConcept C41008148 @default.
- W3200202386 hasConcept C43617362 @default.
- W3200202386 hasConcept C50644808 @default.
- W3200202386 hasConcept C53739315 @default.
- W3200202386 hasConcept C58640448 @default.
- W3200202386 hasConcept C81917197 @default.
- W3200202386 hasConcept C93959086 @default.
- W3200202386 hasConceptScore W3200202386C105795698 @default.
- W3200202386 hasConceptScore W3200202386C119857082 @default.
- W3200202386 hasConceptScore W3200202386C124101348 @default.
- W3200202386 hasConceptScore W3200202386C126645576 @default.
- W3200202386 hasConceptScore W3200202386C126674687 @default.
- W3200202386 hasConceptScore W3200202386C134306372 @default.
- W3200202386 hasConceptScore W3200202386C154945302 @default.
- W3200202386 hasConceptScore W3200202386C168136583 @default.
- W3200202386 hasConceptScore W3200202386C177148314 @default.
- W3200202386 hasConceptScore W3200202386C185592680 @default.
- W3200202386 hasConceptScore W3200202386C198531522 @default.
- W3200202386 hasConceptScore W3200202386C205649164 @default.
- W3200202386 hasConceptScore W3200202386C22019652 @default.