Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200211635> ?p ?o ?g. }
- W3200211635 endingPage "6065" @default.
- W3200211635 startingPage "6065" @default.
- W3200211635 abstract "In order to analyze the nature of electrical demand series in deregulated electricity markets, various forecasting tools have been used. All these forecasting models have been developed to improve the accuracy of the reliability of the model. Therefore, a Wavelet Packet Decomposition (WPD) was implemented to decompose the demand series into subseries. Each subseries has been forecasted individually with the help of the features of that series, and features were chosen on the basis of mutual correlation among all-time lags using an Auto Correlation Function (ACF). Thus, in this context, a new hybrid WPD-based Linear Neural Network with Tapped Delay (LNNTD) model, with a cyclic one-month moving window for a one-year market clearing volume (MCV) forecasting has been proposed. The proposed model has been effectively implemented in two years (2015–2016) and unconstrained MCV data collected from the Indian Energy Exchange (IEX) for 12 grid regions of India. The results presented by the proposed models are better in terms of accuracy, with a yearly average MAPE of 0.201%, MAE of 9.056 MWh, and coefficient of regression (R2) of 0.9996. Further, forecasts of the proposed model have been validated using tracking signals (TS’s) in which the values of TS’s lie within a balanced limit between −492 to 6.83, and universality of the model has been carried out effectively using multiple steps-ahead forecasting up to the sixth step. It has been found out that hybrid models are powerful forecasting tools for demand forecasting." @default.
- W3200211635 created "2021-09-27" @default.
- W3200211635 creator A5009444439 @default.
- W3200211635 creator A5063486841 @default.
- W3200211635 creator A5069506820 @default.
- W3200211635 creator A5078673341 @default.
- W3200211635 creator A5081973723 @default.
- W3200211635 date "2021-09-23" @default.
- W3200211635 modified "2023-10-14" @default.
- W3200211635 title "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals" @default.
- W3200211635 cites W1964984358 @default.
- W3200211635 cites W1990900994 @default.
- W3200211635 cites W1991849870 @default.
- W3200211635 cites W1992278273 @default.
- W3200211635 cites W1995363975 @default.
- W3200211635 cites W1995919245 @default.
- W3200211635 cites W2001165499 @default.
- W3200211635 cites W2005683380 @default.
- W3200211635 cites W2017561014 @default.
- W3200211635 cites W2021861274 @default.
- W3200211635 cites W2022084520 @default.
- W3200211635 cites W2030903867 @default.
- W3200211635 cites W2049986915 @default.
- W3200211635 cites W2068522471 @default.
- W3200211635 cites W2069019512 @default.
- W3200211635 cites W2070704689 @default.
- W3200211635 cites W2073178078 @default.
- W3200211635 cites W2095731600 @default.
- W3200211635 cites W2096673124 @default.
- W3200211635 cites W2100090926 @default.
- W3200211635 cites W2100108878 @default.
- W3200211635 cites W2120046447 @default.
- W3200211635 cites W2128159432 @default.
- W3200211635 cites W2135930185 @default.
- W3200211635 cites W2144690949 @default.
- W3200211635 cites W2150783679 @default.
- W3200211635 cites W2151767444 @default.
- W3200211635 cites W2200377847 @default.
- W3200211635 cites W2345862676 @default.
- W3200211635 cites W2545011432 @default.
- W3200211635 cites W2581822685 @default.
- W3200211635 cites W2905238323 @default.
- W3200211635 cites W2905484288 @default.
- W3200211635 cites W2944436518 @default.
- W3200211635 cites W2979953522 @default.
- W3200211635 cites W2995621191 @default.
- W3200211635 cites W3006815594 @default.
- W3200211635 cites W3090232294 @default.
- W3200211635 cites W3099480097 @default.
- W3200211635 cites W3135274092 @default.
- W3200211635 doi "https://doi.org/10.3390/en14196065" @default.
- W3200211635 hasPublicationYear "2021" @default.
- W3200211635 type Work @default.
- W3200211635 sameAs 3200211635 @default.
- W3200211635 citedByCount "4" @default.
- W3200211635 countsByYear W32002116352022 @default.
- W3200211635 countsByYear W32002116352023 @default.
- W3200211635 crossrefType "journal-article" @default.
- W3200211635 hasAuthorship W3200211635A5009444439 @default.
- W3200211635 hasAuthorship W3200211635A5063486841 @default.
- W3200211635 hasAuthorship W3200211635A5069506820 @default.
- W3200211635 hasAuthorship W3200211635A5078673341 @default.
- W3200211635 hasAuthorship W3200211635A5081973723 @default.
- W3200211635 hasBestOaLocation W32002116351 @default.
- W3200211635 hasConcept C119599485 @default.
- W3200211635 hasConcept C119857082 @default.
- W3200211635 hasConcept C124101348 @default.
- W3200211635 hasConcept C127413603 @default.
- W3200211635 hasConcept C146733006 @default.
- W3200211635 hasConcept C149782125 @default.
- W3200211635 hasConcept C14981831 @default.
- W3200211635 hasConcept C151406439 @default.
- W3200211635 hasConcept C151730666 @default.
- W3200211635 hasConcept C154945302 @default.
- W3200211635 hasConcept C162324750 @default.
- W3200211635 hasConcept C175444787 @default.
- W3200211635 hasConcept C175706884 @default.
- W3200211635 hasConcept C193809577 @default.
- W3200211635 hasConcept C206658404 @default.
- W3200211635 hasConcept C2779343474 @default.
- W3200211635 hasConcept C2780092901 @default.
- W3200211635 hasConcept C2781104810 @default.
- W3200211635 hasConcept C31972630 @default.
- W3200211635 hasConcept C33923547 @default.
- W3200211635 hasConcept C41008148 @default.
- W3200211635 hasConcept C42475967 @default.
- W3200211635 hasConcept C47432892 @default.
- W3200211635 hasConcept C50644808 @default.
- W3200211635 hasConcept C86803240 @default.
- W3200211635 hasConceptScore W3200211635C119599485 @default.
- W3200211635 hasConceptScore W3200211635C119857082 @default.
- W3200211635 hasConceptScore W3200211635C124101348 @default.
- W3200211635 hasConceptScore W3200211635C127413603 @default.
- W3200211635 hasConceptScore W3200211635C146733006 @default.
- W3200211635 hasConceptScore W3200211635C149782125 @default.
- W3200211635 hasConceptScore W3200211635C14981831 @default.
- W3200211635 hasConceptScore W3200211635C151406439 @default.
- W3200211635 hasConceptScore W3200211635C151730666 @default.