Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200224875> ?p ?o ?g. }
- W3200224875 endingPage "1267" @default.
- W3200224875 startingPage "1255" @default.
- W3200224875 abstract "In single-particle microrheology, the viscoelastic properties of a complex fluid can be extracted using the generalized Stokes–Einstein (GSE) relation by embedding a micrometer-sized particle and tracking its motion through the fluid. Applying the same analysis to molecular dynamics simulations can result in overestimated G∗ values because of the hydrodynamic interaction between the probe bead and its periodic images. We derive a simple correction to the GSE equation by implementing an analytical solution for Stokes drag on a periodic array of spheres, which allows smaller box sizes to be simulated while still retaining accuracy. Fluid and particle inertia are neglected, although the approach used here might be generalized to include them. The correction is applied to molecular dynamics simulations of a coarse-grained polymer melt. For several bead-to-box-size ratios R/L and two probe sizes, we measure the mean squared displacement and calculate G∗ using both the original GSE and the corrected hydrodynamic Stokes–Einstein (HSE) equations. These results are compared to small amplitude oscillatory non-equilibrium molecular dynamics (NEMD) simulations, which show that the HSE analysis correctly predicts the G∗ values at low frequencies but breaks down when either fluid inertia is important or the bead size is too small to “see” a continuum. For small R/L, the GSE and HSE results are similar, although a small correction is still required for the finite box size and computational cost is significantly larger. The HSE equation allows the use of smaller box sizes, reducing computational costs by more than an order of magnitude." @default.
- W3200224875 created "2021-09-27" @default.
- W3200224875 creator A5004343897 @default.
- W3200224875 creator A5018748723 @default.
- W3200224875 creator A5050314036 @default.
- W3200224875 creator A5057719786 @default.
- W3200224875 creator A5072264400 @default.
- W3200224875 date "2021-11-01" @default.
- W3200224875 modified "2023-09-27" @default.
- W3200224875 title "Microrheology analysis in molecular dynamics simulations: Finite box size correction" @default.
- W3200224875 cites W1505142541 @default.
- W3200224875 cites W1845618662 @default.
- W3200224875 cites W1847703197 @default.
- W3200224875 cites W1965249348 @default.
- W3200224875 cites W1980699127 @default.
- W3200224875 cites W1981562667 @default.
- W3200224875 cites W1985285988 @default.
- W3200224875 cites W1986921499 @default.
- W3200224875 cites W2002208582 @default.
- W3200224875 cites W2004369921 @default.
- W3200224875 cites W2008602852 @default.
- W3200224875 cites W2010739090 @default.
- W3200224875 cites W2010765326 @default.
- W3200224875 cites W2012427499 @default.
- W3200224875 cites W2013239995 @default.
- W3200224875 cites W2015284858 @default.
- W3200224875 cites W2016220173 @default.
- W3200224875 cites W2017182404 @default.
- W3200224875 cites W2019465613 @default.
- W3200224875 cites W2021870539 @default.
- W3200224875 cites W2022317724 @default.
- W3200224875 cites W2026186886 @default.
- W3200224875 cites W2026408190 @default.
- W3200224875 cites W2029142934 @default.
- W3200224875 cites W2039167760 @default.
- W3200224875 cites W2039253844 @default.
- W3200224875 cites W2041843167 @default.
- W3200224875 cites W2042314068 @default.
- W3200224875 cites W2043742048 @default.
- W3200224875 cites W2044419342 @default.
- W3200224875 cites W2049921721 @default.
- W3200224875 cites W2051144463 @default.
- W3200224875 cites W2056357374 @default.
- W3200224875 cites W2056611632 @default.
- W3200224875 cites W2056998258 @default.
- W3200224875 cites W2057089150 @default.
- W3200224875 cites W2057250195 @default.
- W3200224875 cites W2058394563 @default.
- W3200224875 cites W2058737441 @default.
- W3200224875 cites W2060550289 @default.
- W3200224875 cites W2060681932 @default.
- W3200224875 cites W2069664372 @default.
- W3200224875 cites W2069988675 @default.
- W3200224875 cites W2070062845 @default.
- W3200224875 cites W2073152470 @default.
- W3200224875 cites W2078472083 @default.
- W3200224875 cites W2084382908 @default.
- W3200224875 cites W2084498652 @default.
- W3200224875 cites W2085302450 @default.
- W3200224875 cites W2087404487 @default.
- W3200224875 cites W2089006288 @default.
- W3200224875 cites W2089140781 @default.
- W3200224875 cites W2090298012 @default.
- W3200224875 cites W2098772492 @default.
- W3200224875 cites W2105882738 @default.
- W3200224875 cites W2114407125 @default.
- W3200224875 cites W2120000044 @default.
- W3200224875 cites W2121343308 @default.
- W3200224875 cites W2126946593 @default.
- W3200224875 cites W2131635647 @default.
- W3200224875 cites W2156383534 @default.
- W3200224875 cites W2160899591 @default.
- W3200224875 cites W2161346554 @default.
- W3200224875 cites W2169659749 @default.
- W3200224875 cites W2322857303 @default.
- W3200224875 cites W2327629597 @default.
- W3200224875 cites W2334630570 @default.
- W3200224875 cites W2342048229 @default.
- W3200224875 cites W2467291511 @default.
- W3200224875 cites W2619102628 @default.
- W3200224875 cites W2754881207 @default.
- W3200224875 cites W2766600256 @default.
- W3200224875 cites W2792814983 @default.
- W3200224875 cites W2906109161 @default.
- W3200224875 cites W3017082821 @default.
- W3200224875 cites W3027539213 @default.
- W3200224875 cites W3106340567 @default.
- W3200224875 cites W3170024756 @default.
- W3200224875 cites W4239969331 @default.
- W3200224875 cites W4243234705 @default.
- W3200224875 cites W4246712934 @default.
- W3200224875 cites W4256185514 @default.
- W3200224875 cites W4298355191 @default.
- W3200224875 doi "https://doi.org/10.1122/8.0000158" @default.
- W3200224875 hasPublicationYear "2021" @default.
- W3200224875 type Work @default.
- W3200224875 sameAs 3200224875 @default.
- W3200224875 citedByCount "11" @default.