Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200228418> ?p ?o ?g. }
- W3200228418 endingPage "110137" @default.
- W3200228418 startingPage "110137" @default.
- W3200228418 abstract "The earth is constantly being changed by natural events and human activities that constantly threaten our environment. Therefore, accurate and timely monitoring of changes at the surface of the earth is of great importance for properly facing their consequences. This research presents a new hyperspectral change detection (HCD) framework based on a robust binary mask and convolutional neural network (CNN). The proposed method is implemented in three parts: (1) the first part provides a robust binary change map based on Otsu and dynamic time wrapping (DTW) algorithms; the DTW algorithm plays a predictor role that is a robust predictor for HCD purposes. Also, Otsu’s algorithm gives an estimate about the approximate threshold for detecting change and no-change class areas. These class areas will be used in the next steps. (2) The second part generates pseudo training data based on an image differencing (ID) algorithm and spectral unmixing (SU) manner for multiple change detection. This pseudo training data will be used for training the CNN model in the next step. (3) Finally, the multiple change map is generated by training the CNN network based on pseudo training data. The result of HCD maps is compared to other robust hyperspectral change detection methods by two real bi-temporal hyperspectral image datasets. The result of HCD in multiple change map shows the proposed method can have high performance compared to other HCD methods with an overall accuracy (OA) of more than 92% and Kappa coefficient (KC) of 0.77 and higher." @default.
- W3200228418 created "2021-09-27" @default.
- W3200228418 creator A5003591539 @default.
- W3200228418 creator A5018156889 @default.
- W3200228418 date "2021-12-01" @default.
- W3200228418 modified "2023-09-29" @default.
- W3200228418 title "A New Structure for Binary and Multiple Hyperspectral Change Detection Based on Spectral Unmixing and Convolutional Neural Network" @default.
- W3200228418 cites W1979061792 @default.
- W3200228418 cites W1982141954 @default.
- W3200228418 cites W2002358109 @default.
- W3200228418 cites W2026958124 @default.
- W3200228418 cites W2038513356 @default.
- W3200228418 cites W2039806043 @default.
- W3200228418 cites W2134328014 @default.
- W3200228418 cites W2134969826 @default.
- W3200228418 cites W2157026765 @default.
- W3200228418 cites W2163886442 @default.
- W3200228418 cites W2167799103 @default.
- W3200228418 cites W2528975388 @default.
- W3200228418 cites W2599811973 @default.
- W3200228418 cites W2726981152 @default.
- W3200228418 cites W2745651698 @default.
- W3200228418 cites W2752509951 @default.
- W3200228418 cites W2773926432 @default.
- W3200228418 cites W2782517596 @default.
- W3200228418 cites W2783608381 @default.
- W3200228418 cites W2800240447 @default.
- W3200228418 cites W2898923688 @default.
- W3200228418 cites W2900587135 @default.
- W3200228418 cites W2911648799 @default.
- W3200228418 cites W2914676574 @default.
- W3200228418 cites W2917189553 @default.
- W3200228418 cites W2921511952 @default.
- W3200228418 cites W2937445530 @default.
- W3200228418 cites W2947716040 @default.
- W3200228418 cites W2966166905 @default.
- W3200228418 cites W2972141604 @default.
- W3200228418 cites W2973851347 @default.
- W3200228418 cites W2981863867 @default.
- W3200228418 cites W2982364778 @default.
- W3200228418 cites W2988073690 @default.
- W3200228418 cites W2990709406 @default.
- W3200228418 cites W2991575127 @default.
- W3200228418 cites W2998891120 @default.
- W3200228418 cites W3002349559 @default.
- W3200228418 cites W3002674187 @default.
- W3200228418 cites W3004704948 @default.
- W3200228418 cites W3006857401 @default.
- W3200228418 cites W3007397120 @default.
- W3200228418 cites W3011265345 @default.
- W3200228418 cites W3013176109 @default.
- W3200228418 cites W3015167329 @default.
- W3200228418 cites W3020832687 @default.
- W3200228418 cites W3029888544 @default.
- W3200228418 cites W3036559446 @default.
- W3200228418 cites W3037587714 @default.
- W3200228418 cites W3084637795 @default.
- W3200228418 cites W3099831940 @default.
- W3200228418 cites W3118252739 @default.
- W3200228418 cites W3119609454 @default.
- W3200228418 cites W3119855172 @default.
- W3200228418 cites W3122817280 @default.
- W3200228418 cites W3129986901 @default.
- W3200228418 cites W3140420700 @default.
- W3200228418 cites W3160425084 @default.
- W3200228418 cites W3175027096 @default.
- W3200228418 cites W3176244435 @default.
- W3200228418 cites W3200993454 @default.
- W3200228418 doi "https://doi.org/10.1016/j.measurement.2021.110137" @default.
- W3200228418 hasPublicationYear "2021" @default.
- W3200228418 type Work @default.
- W3200228418 sameAs 3200228418 @default.
- W3200228418 citedByCount "18" @default.
- W3200228418 countsByYear W32002284182021 @default.
- W3200228418 countsByYear W32002284182022 @default.
- W3200228418 countsByYear W32002284182023 @default.
- W3200228418 crossrefType "journal-article" @default.
- W3200228418 hasAuthorship W3200228418A5003591539 @default.
- W3200228418 hasAuthorship W3200228418A5018156889 @default.
- W3200228418 hasConcept C115961682 @default.
- W3200228418 hasConcept C124504099 @default.
- W3200228418 hasConcept C153180895 @default.
- W3200228418 hasConcept C154945302 @default.
- W3200228418 hasConcept C159078339 @default.
- W3200228418 hasConcept C203595873 @default.
- W3200228418 hasConcept C21729346 @default.
- W3200228418 hasConcept C33923547 @default.
- W3200228418 hasConcept C41008148 @default.
- W3200228418 hasConcept C48372109 @default.
- W3200228418 hasConcept C50644808 @default.
- W3200228418 hasConcept C81363708 @default.
- W3200228418 hasConcept C94375191 @default.
- W3200228418 hasConceptScore W3200228418C115961682 @default.
- W3200228418 hasConceptScore W3200228418C124504099 @default.
- W3200228418 hasConceptScore W3200228418C153180895 @default.
- W3200228418 hasConceptScore W3200228418C154945302 @default.
- W3200228418 hasConceptScore W3200228418C159078339 @default.
- W3200228418 hasConceptScore W3200228418C203595873 @default.